138 lines
4.3 KiB
C
138 lines
4.3 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#ifndef METIS_SUPPORT_H
|
||
|
#define METIS_SUPPORT_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
/**
|
||
|
* Get the fill-reducing ordering from the METIS package
|
||
|
*
|
||
|
* If A is the original matrix and Ap is the permuted matrix,
|
||
|
* the fill-reducing permutation is defined as follows :
|
||
|
* Row (column) i of A is the matperm(i) row (column) of Ap.
|
||
|
* WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
|
||
|
*/
|
||
|
template <typename Index>
|
||
|
class MetisOrdering
|
||
|
{
|
||
|
public:
|
||
|
typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType;
|
||
|
typedef Matrix<Index,Dynamic,1> IndexVector;
|
||
|
|
||
|
template <typename MatrixType>
|
||
|
void get_symmetrized_graph(const MatrixType& A)
|
||
|
{
|
||
|
Index m = A.cols();
|
||
|
eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES");
|
||
|
// Get the transpose of the input matrix
|
||
|
MatrixType At = A.transpose();
|
||
|
// Get the number of nonzeros elements in each row/col of At+A
|
||
|
Index TotNz = 0;
|
||
|
IndexVector visited(m);
|
||
|
visited.setConstant(-1);
|
||
|
for (int j = 0; j < m; j++)
|
||
|
{
|
||
|
// Compute the union structure of of A(j,:) and At(j,:)
|
||
|
visited(j) = j; // Do not include the diagonal element
|
||
|
// Get the nonzeros in row/column j of A
|
||
|
for (typename MatrixType::InnerIterator it(A, j); it; ++it)
|
||
|
{
|
||
|
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
|
||
|
if (visited(idx) != j )
|
||
|
{
|
||
|
visited(idx) = j;
|
||
|
++TotNz;
|
||
|
}
|
||
|
}
|
||
|
//Get the nonzeros in row/column j of At
|
||
|
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
|
||
|
{
|
||
|
Index idx = it.index();
|
||
|
if(visited(idx) != j)
|
||
|
{
|
||
|
visited(idx) = j;
|
||
|
++TotNz;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Reserve place for A + At
|
||
|
m_indexPtr.resize(m+1);
|
||
|
m_innerIndices.resize(TotNz);
|
||
|
|
||
|
// Now compute the real adjacency list of each column/row
|
||
|
visited.setConstant(-1);
|
||
|
Index CurNz = 0;
|
||
|
for (int j = 0; j < m; j++)
|
||
|
{
|
||
|
m_indexPtr(j) = CurNz;
|
||
|
|
||
|
visited(j) = j; // Do not include the diagonal element
|
||
|
// Add the pattern of row/column j of A to A+At
|
||
|
for (typename MatrixType::InnerIterator it(A,j); it; ++it)
|
||
|
{
|
||
|
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
|
||
|
if (visited(idx) != j )
|
||
|
{
|
||
|
visited(idx) = j;
|
||
|
m_innerIndices(CurNz) = idx;
|
||
|
CurNz++;
|
||
|
}
|
||
|
}
|
||
|
//Add the pattern of row/column j of At to A+At
|
||
|
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
|
||
|
{
|
||
|
Index idx = it.index();
|
||
|
if(visited(idx) != j)
|
||
|
{
|
||
|
visited(idx) = j;
|
||
|
m_innerIndices(CurNz) = idx;
|
||
|
++CurNz;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
m_indexPtr(m) = CurNz;
|
||
|
}
|
||
|
|
||
|
template <typename MatrixType>
|
||
|
void operator() (const MatrixType& A, PermutationType& matperm)
|
||
|
{
|
||
|
Index m = A.cols();
|
||
|
IndexVector perm(m),iperm(m);
|
||
|
// First, symmetrize the matrix graph.
|
||
|
get_symmetrized_graph(A);
|
||
|
int output_error;
|
||
|
|
||
|
// Call the fill-reducing routine from METIS
|
||
|
output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data());
|
||
|
|
||
|
if(output_error != METIS_OK)
|
||
|
{
|
||
|
//FIXME The ordering interface should define a class of possible errors
|
||
|
std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n";
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Get the fill-reducing permutation
|
||
|
//NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows
|
||
|
// Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap
|
||
|
|
||
|
matperm.resize(m);
|
||
|
for (int j = 0; j < m; j++)
|
||
|
matperm.indices()(iperm(j)) = j;
|
||
|
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column
|
||
|
IndexVector m_innerIndices; // Adjacency list
|
||
|
};
|
||
|
|
||
|
}// end namespace eigen
|
||
|
#endif
|