699 lines
27 KiB
C
699 lines
27 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// TODO(sameeragarwal): row_block_counter can perhaps be replaced by
|
||
|
// Chunk::start ?
|
||
|
|
||
|
#ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
|
||
|
#define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
|
||
|
|
||
|
// Eigen has an internal threshold switching between different matrix
|
||
|
// multiplication algorithms. In particular for matrices larger than
|
||
|
// EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly
|
||
|
// matrix matrix product algorithm that has a higher setup cost. For
|
||
|
// matrix sizes close to this threshold, especially when the matrices
|
||
|
// are thin and long, the default choice may not be optimal. This is
|
||
|
// the case for us, as the default choice causes a 30% performance
|
||
|
// regression when we moved from Eigen2 to Eigen3.
|
||
|
|
||
|
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10
|
||
|
|
||
|
// This include must come before any #ifndef check on Ceres compile options.
|
||
|
#include "ceres/internal/port.h"
|
||
|
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <map>
|
||
|
#include "ceres/block_random_access_matrix.h"
|
||
|
#include "ceres/block_sparse_matrix.h"
|
||
|
#include "ceres/block_structure.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/fixed_array.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/map_util.h"
|
||
|
#include "ceres/schur_eliminator.h"
|
||
|
#include "ceres/small_blas.h"
|
||
|
#include "ceres/stl_util.h"
|
||
|
#include "Eigen/Dense"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {
|
||
|
STLDeleteElements(&rhs_locks_);
|
||
|
}
|
||
|
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
Init(int num_eliminate_blocks, const CompressedRowBlockStructure* bs) {
|
||
|
CHECK_GT(num_eliminate_blocks, 0)
|
||
|
<< "SchurComplementSolver cannot be initialized with "
|
||
|
<< "num_eliminate_blocks = 0.";
|
||
|
|
||
|
num_eliminate_blocks_ = num_eliminate_blocks;
|
||
|
|
||
|
const int num_col_blocks = bs->cols.size();
|
||
|
const int num_row_blocks = bs->rows.size();
|
||
|
|
||
|
buffer_size_ = 1;
|
||
|
chunks_.clear();
|
||
|
lhs_row_layout_.clear();
|
||
|
|
||
|
int lhs_num_rows = 0;
|
||
|
// Add a map object for each block in the reduced linear system
|
||
|
// and build the row/column block structure of the reduced linear
|
||
|
// system.
|
||
|
lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);
|
||
|
for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
|
||
|
lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;
|
||
|
lhs_num_rows += bs->cols[i].size;
|
||
|
}
|
||
|
|
||
|
int r = 0;
|
||
|
// Iterate over the row blocks of A, and detect the chunks. The
|
||
|
// matrix should already have been ordered so that all rows
|
||
|
// containing the same y block are vertically contiguous. Along
|
||
|
// the way also compute the amount of space each chunk will need
|
||
|
// to perform the elimination.
|
||
|
while (r < num_row_blocks) {
|
||
|
const int chunk_block_id = bs->rows[r].cells.front().block_id;
|
||
|
if (chunk_block_id >= num_eliminate_blocks_) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
chunks_.push_back(Chunk());
|
||
|
Chunk& chunk = chunks_.back();
|
||
|
chunk.size = 0;
|
||
|
chunk.start = r;
|
||
|
int buffer_size = 0;
|
||
|
const int e_block_size = bs->cols[chunk_block_id].size;
|
||
|
|
||
|
// Add to the chunk until the first block in the row is
|
||
|
// different than the one in the first row for the chunk.
|
||
|
while (r + chunk.size < num_row_blocks) {
|
||
|
const CompressedRow& row = bs->rows[r + chunk.size];
|
||
|
if (row.cells.front().block_id != chunk_block_id) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Iterate over the blocks in the row, ignoring the first
|
||
|
// block since it is the one to be eliminated.
|
||
|
for (int c = 1; c < row.cells.size(); ++c) {
|
||
|
const Cell& cell = row.cells[c];
|
||
|
if (InsertIfNotPresent(
|
||
|
&(chunk.buffer_layout), cell.block_id, buffer_size)) {
|
||
|
buffer_size += e_block_size * bs->cols[cell.block_id].size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
buffer_size_ = std::max(buffer_size, buffer_size_);
|
||
|
++chunk.size;
|
||
|
}
|
||
|
|
||
|
CHECK_GT(chunk.size, 0);
|
||
|
r += chunk.size;
|
||
|
}
|
||
|
const Chunk& chunk = chunks_.back();
|
||
|
|
||
|
uneliminated_row_begins_ = chunk.start + chunk.size;
|
||
|
if (num_threads_ > 1) {
|
||
|
random_shuffle(chunks_.begin(), chunks_.end());
|
||
|
}
|
||
|
|
||
|
buffer_.reset(new double[buffer_size_ * num_threads_]);
|
||
|
|
||
|
// chunk_outer_product_buffer_ only needs to store e_block_size *
|
||
|
// f_block_size, which is always less than buffer_size_, so we just
|
||
|
// allocate buffer_size_ per thread.
|
||
|
chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]);
|
||
|
|
||
|
STLDeleteElements(&rhs_locks_);
|
||
|
rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);
|
||
|
for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {
|
||
|
rhs_locks_[i] = new Mutex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
Eliminate(const BlockSparseMatrix* A,
|
||
|
const double* b,
|
||
|
const double* D,
|
||
|
BlockRandomAccessMatrix* lhs,
|
||
|
double* rhs) {
|
||
|
if (lhs->num_rows() > 0) {
|
||
|
lhs->SetZero();
|
||
|
VectorRef(rhs, lhs->num_rows()).setZero();
|
||
|
}
|
||
|
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
const int num_col_blocks = bs->cols.size();
|
||
|
|
||
|
// Add the diagonal to the schur complement.
|
||
|
if (D != NULL) {
|
||
|
#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
|
||
|
for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
|
||
|
const int block_id = i - num_eliminate_blocks_;
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block_id, block_id,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
const int block_size = bs->cols[i].size;
|
||
|
typename EigenTypes<Eigen::Dynamic>::ConstVectorRef
|
||
|
diag(D + bs->cols[i].position, block_size);
|
||
|
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
MatrixRef m(cell_info->values, row_stride, col_stride);
|
||
|
m.block(r, c, block_size, block_size).diagonal()
|
||
|
+= diag.array().square().matrix();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Eliminate y blocks one chunk at a time. For each chunk, compute
|
||
|
// the entries of the normal equations and the gradient vector block
|
||
|
// corresponding to the y block and then apply Gaussian elimination
|
||
|
// to them. The matrix ete stores the normal matrix corresponding to
|
||
|
// the block being eliminated and array buffer_ contains the
|
||
|
// non-zero blocks in the row corresponding to this y block in the
|
||
|
// normal equations. This computation is done in
|
||
|
// ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian
|
||
|
// elimination to the rhs of the normal equations, updating the rhs
|
||
|
// of the reduced linear system by modifying rhs blocks for all the
|
||
|
// z blocks that share a row block/residual term with the y
|
||
|
// block. EliminateRowOuterProduct does the corresponding operation
|
||
|
// for the lhs of the reduced linear system.
|
||
|
#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
|
||
|
for (int i = 0; i < chunks_.size(); ++i) {
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
int thread_id = omp_get_thread_num();
|
||
|
#else
|
||
|
int thread_id = 0;
|
||
|
#endif
|
||
|
double* buffer = buffer_.get() + thread_id * buffer_size_;
|
||
|
const Chunk& chunk = chunks_[i];
|
||
|
const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
|
||
|
const int e_block_size = bs->cols[e_block_id].size;
|
||
|
|
||
|
VectorRef(buffer, buffer_size_).setZero();
|
||
|
|
||
|
typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
|
||
|
ete(e_block_size, e_block_size);
|
||
|
|
||
|
if (D != NULL) {
|
||
|
const typename EigenTypes<kEBlockSize>::ConstVectorRef
|
||
|
diag(D + bs->cols[e_block_id].position, e_block_size);
|
||
|
ete = diag.array().square().matrix().asDiagonal();
|
||
|
} else {
|
||
|
ete.setZero();
|
||
|
}
|
||
|
|
||
|
FixedArray<double, 8> g(e_block_size);
|
||
|
typename EigenTypes<kEBlockSize>::VectorRef gref(g.get(), e_block_size);
|
||
|
gref.setZero();
|
||
|
|
||
|
// We are going to be computing
|
||
|
//
|
||
|
// S += F'F - F'E(E'E)^{-1}E'F
|
||
|
//
|
||
|
// for each Chunk. The computation is broken down into a number of
|
||
|
// function calls as below.
|
||
|
|
||
|
// Compute the outer product of the e_blocks with themselves (ete
|
||
|
// = E'E). Compute the product of the e_blocks with the
|
||
|
// corresonding f_blocks (buffer = E'F), the gradient of the terms
|
||
|
// in this chunk (g) and add the outer product of the f_blocks to
|
||
|
// Schur complement (S += F'F).
|
||
|
ChunkDiagonalBlockAndGradient(
|
||
|
chunk, A, b, chunk.start, &ete, g.get(), buffer, lhs);
|
||
|
|
||
|
// Normally one wouldn't compute the inverse explicitly, but
|
||
|
// e_block_size will typically be a small number like 3, in
|
||
|
// which case its much faster to compute the inverse once and
|
||
|
// use it to multiply other matrices/vectors instead of doing a
|
||
|
// Solve call over and over again.
|
||
|
typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =
|
||
|
ete
|
||
|
.template selfadjointView<Eigen::Upper>()
|
||
|
.llt()
|
||
|
.solve(Matrix::Identity(e_block_size, e_block_size));
|
||
|
|
||
|
// For the current chunk compute and update the rhs of the reduced
|
||
|
// linear system.
|
||
|
//
|
||
|
// rhs = F'b - F'E(E'E)^(-1) E'b
|
||
|
|
||
|
FixedArray<double, 8> inverse_ete_g(e_block_size);
|
||
|
MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(
|
||
|
inverse_ete.data(),
|
||
|
e_block_size,
|
||
|
e_block_size,
|
||
|
g.get(),
|
||
|
inverse_ete_g.get());
|
||
|
|
||
|
UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.get(), rhs);
|
||
|
|
||
|
// S -= F'E(E'E)^{-1}E'F
|
||
|
ChunkOuterProduct(bs, inverse_ete, buffer, chunk.buffer_layout, lhs);
|
||
|
}
|
||
|
|
||
|
// For rows with no e_blocks, the schur complement update reduces to
|
||
|
// S += F'F.
|
||
|
NoEBlockRowsUpdate(A, b, uneliminated_row_begins_, lhs, rhs);
|
||
|
}
|
||
|
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
BackSubstitute(const BlockSparseMatrix* A,
|
||
|
const double* b,
|
||
|
const double* D,
|
||
|
const double* z,
|
||
|
double* y) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
|
||
|
for (int i = 0; i < chunks_.size(); ++i) {
|
||
|
const Chunk& chunk = chunks_[i];
|
||
|
const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
|
||
|
const int e_block_size = bs->cols[e_block_id].size;
|
||
|
|
||
|
double* y_ptr = y + bs->cols[e_block_id].position;
|
||
|
typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);
|
||
|
|
||
|
typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
|
||
|
ete(e_block_size, e_block_size);
|
||
|
if (D != NULL) {
|
||
|
const typename EigenTypes<kEBlockSize>::ConstVectorRef
|
||
|
diag(D + bs->cols[e_block_id].position, e_block_size);
|
||
|
ete = diag.array().square().matrix().asDiagonal();
|
||
|
} else {
|
||
|
ete.setZero();
|
||
|
}
|
||
|
|
||
|
const double* values = A->values();
|
||
|
for (int j = 0; j < chunk.size; ++j) {
|
||
|
const CompressedRow& row = bs->rows[chunk.start + j];
|
||
|
const Cell& e_cell = row.cells.front();
|
||
|
DCHECK_EQ(e_block_id, e_cell.block_id);
|
||
|
|
||
|
FixedArray<double, 8> sj(row.block.size);
|
||
|
|
||
|
typename EigenTypes<kRowBlockSize>::VectorRef(sj.get(), row.block.size) =
|
||
|
typename EigenTypes<kRowBlockSize>::ConstVectorRef
|
||
|
(b + bs->rows[chunk.start + j].block.position, row.block.size);
|
||
|
|
||
|
for (int c = 1; c < row.cells.size(); ++c) {
|
||
|
const int f_block_id = row.cells[c].block_id;
|
||
|
const int f_block_size = bs->cols[f_block_id].size;
|
||
|
const int r_block = f_block_id - num_eliminate_blocks_;
|
||
|
|
||
|
MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(
|
||
|
values + row.cells[c].position, row.block.size, f_block_size,
|
||
|
z + lhs_row_layout_[r_block],
|
||
|
sj.get());
|
||
|
}
|
||
|
|
||
|
MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
sj.get(),
|
||
|
y_ptr);
|
||
|
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
ete.data(), 0, 0, e_block_size, e_block_size);
|
||
|
}
|
||
|
|
||
|
ete.llt().solveInPlace(y_block);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Update the rhs of the reduced linear system. Compute
|
||
|
//
|
||
|
// F'b - F'E(E'E)^(-1) E'b
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
UpdateRhs(const Chunk& chunk,
|
||
|
const BlockSparseMatrix* A,
|
||
|
const double* b,
|
||
|
int row_block_counter,
|
||
|
const double* inverse_ete_g,
|
||
|
double* rhs) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
|
||
|
const int e_block_size = bs->cols[e_block_id].size;
|
||
|
|
||
|
int b_pos = bs->rows[row_block_counter].block.position;
|
||
|
const double* values = A->values();
|
||
|
for (int j = 0; j < chunk.size; ++j) {
|
||
|
const CompressedRow& row = bs->rows[row_block_counter + j];
|
||
|
const Cell& e_cell = row.cells.front();
|
||
|
|
||
|
typename EigenTypes<kRowBlockSize>::Vector sj =
|
||
|
typename EigenTypes<kRowBlockSize>::ConstVectorRef
|
||
|
(b + b_pos, row.block.size);
|
||
|
|
||
|
MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
inverse_ete_g, sj.data());
|
||
|
|
||
|
for (int c = 1; c < row.cells.size(); ++c) {
|
||
|
const int block_id = row.cells[c].block_id;
|
||
|
const int block_size = bs->cols[block_id].size;
|
||
|
const int block = block_id - num_eliminate_blocks_;
|
||
|
CeresMutexLock l(rhs_locks_[block]);
|
||
|
MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
|
||
|
values + row.cells[c].position,
|
||
|
row.block.size, block_size,
|
||
|
sj.data(), rhs + lhs_row_layout_[block]);
|
||
|
}
|
||
|
b_pos += row.block.size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Given a Chunk - set of rows with the same e_block, e.g. in the
|
||
|
// following Chunk with two rows.
|
||
|
//
|
||
|
// E F
|
||
|
// [ y11 0 0 0 | z11 0 0 0 z51]
|
||
|
// [ y12 0 0 0 | z12 z22 0 0 0]
|
||
|
//
|
||
|
// this function computes twp matrices. The diagonal block matrix
|
||
|
//
|
||
|
// ete = y11 * y11' + y12 * y12'
|
||
|
//
|
||
|
// and the off diagonal blocks in the Guass Newton Hessian.
|
||
|
//
|
||
|
// buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]
|
||
|
//
|
||
|
// which are zero compressed versions of the block sparse matrices E'E
|
||
|
// and E'F.
|
||
|
//
|
||
|
// and the gradient of the e_block, E'b.
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
ChunkDiagonalBlockAndGradient(
|
||
|
const Chunk& chunk,
|
||
|
const BlockSparseMatrix* A,
|
||
|
const double* b,
|
||
|
int row_block_counter,
|
||
|
typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,
|
||
|
double* g,
|
||
|
double* buffer,
|
||
|
BlockRandomAccessMatrix* lhs) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
|
||
|
int b_pos = bs->rows[row_block_counter].block.position;
|
||
|
const int e_block_size = ete->rows();
|
||
|
|
||
|
// Iterate over the rows in this chunk, for each row, compute the
|
||
|
// contribution of its F blocks to the Schur complement, the
|
||
|
// contribution of its E block to the matrix EE' (ete), and the
|
||
|
// corresponding block in the gradient vector.
|
||
|
const double* values = A->values();
|
||
|
for (int j = 0; j < chunk.size; ++j) {
|
||
|
const CompressedRow& row = bs->rows[row_block_counter + j];
|
||
|
|
||
|
if (row.cells.size() > 1) {
|
||
|
EBlockRowOuterProduct(A, row_block_counter + j, lhs);
|
||
|
}
|
||
|
|
||
|
// Extract the e_block, ETE += E_i' E_i
|
||
|
const Cell& e_cell = row.cells.front();
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
ete->data(), 0, 0, e_block_size, e_block_size);
|
||
|
|
||
|
// g += E_i' b_i
|
||
|
MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
b + b_pos,
|
||
|
g);
|
||
|
|
||
|
|
||
|
// buffer = E'F. This computation is done by iterating over the
|
||
|
// f_blocks for each row in the chunk.
|
||
|
for (int c = 1; c < row.cells.size(); ++c) {
|
||
|
const int f_block_id = row.cells[c].block_id;
|
||
|
const int f_block_size = bs->cols[f_block_id].size;
|
||
|
double* buffer_ptr =
|
||
|
buffer + FindOrDie(chunk.buffer_layout, f_block_id);
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(
|
||
|
values + e_cell.position, row.block.size, e_block_size,
|
||
|
values + row.cells[c].position, row.block.size, f_block_size,
|
||
|
buffer_ptr, 0, 0, e_block_size, f_block_size);
|
||
|
}
|
||
|
b_pos += row.block.size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the
|
||
|
// Schur complement matrix, i.e
|
||
|
//
|
||
|
// S -= F'E(E'E)^{-1}E'F.
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
ChunkOuterProduct(const CompressedRowBlockStructure* bs,
|
||
|
const Matrix& inverse_ete,
|
||
|
const double* buffer,
|
||
|
const BufferLayoutType& buffer_layout,
|
||
|
BlockRandomAccessMatrix* lhs) {
|
||
|
// This is the most computationally expensive part of this
|
||
|
// code. Profiling experiments reveal that the bottleneck is not the
|
||
|
// computation of the right-hand matrix product, but memory
|
||
|
// references to the left hand side.
|
||
|
const int e_block_size = inverse_ete.rows();
|
||
|
BufferLayoutType::const_iterator it1 = buffer_layout.begin();
|
||
|
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
int thread_id = omp_get_thread_num();
|
||
|
#else
|
||
|
int thread_id = 0;
|
||
|
#endif
|
||
|
double* b1_transpose_inverse_ete =
|
||
|
chunk_outer_product_buffer_.get() + thread_id * buffer_size_;
|
||
|
|
||
|
// S(i,j) -= bi' * ete^{-1} b_j
|
||
|
for (; it1 != buffer_layout.end(); ++it1) {
|
||
|
const int block1 = it1->first - num_eliminate_blocks_;
|
||
|
const int block1_size = bs->cols[it1->first].size;
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(
|
||
|
buffer + it1->second, e_block_size, block1_size,
|
||
|
inverse_ete.data(), e_block_size, e_block_size,
|
||
|
b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);
|
||
|
|
||
|
BufferLayoutType::const_iterator it2 = it1;
|
||
|
for (; it2 != buffer_layout.end(); ++it2) {
|
||
|
const int block2 = it2->first - num_eliminate_blocks_;
|
||
|
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block1, block2,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
const int block2_size = bs->cols[it2->first].size;
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
MatrixMatrixMultiply
|
||
|
<kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(
|
||
|
b1_transpose_inverse_ete, block1_size, e_block_size,
|
||
|
buffer + it2->second, e_block_size, block2_size,
|
||
|
cell_info->values, r, c, row_stride, col_stride);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For rows with no e_blocks, the schur complement update reduces to S
|
||
|
// += F'F. This function iterates over the rows of A with no e_block,
|
||
|
// and calls NoEBlockRowOuterProduct on each row.
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
NoEBlockRowsUpdate(const BlockSparseMatrix* A,
|
||
|
const double* b,
|
||
|
int row_block_counter,
|
||
|
BlockRandomAccessMatrix* lhs,
|
||
|
double* rhs) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
const double* values = A->values();
|
||
|
for (; row_block_counter < bs->rows.size(); ++row_block_counter) {
|
||
|
const CompressedRow& row = bs->rows[row_block_counter];
|
||
|
for (int c = 0; c < row.cells.size(); ++c) {
|
||
|
const int block_id = row.cells[c].block_id;
|
||
|
const int block_size = bs->cols[block_id].size;
|
||
|
const int block = block_id - num_eliminate_blocks_;
|
||
|
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
|
||
|
values + row.cells[c].position, row.block.size, block_size,
|
||
|
b + row.block.position,
|
||
|
rhs + lhs_row_layout_[block]);
|
||
|
}
|
||
|
NoEBlockRowOuterProduct(A, row_block_counter, lhs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// A row r of A, which has no e_blocks gets added to the Schur
|
||
|
// Complement as S += r r'. This function is responsible for computing
|
||
|
// the contribution of a single row r to the Schur complement. It is
|
||
|
// very similar in structure to EBlockRowOuterProduct except for
|
||
|
// one difference. It does not use any of the template
|
||
|
// parameters. This is because the algorithm used for detecting the
|
||
|
// static structure of the matrix A only pays attention to rows with
|
||
|
// e_blocks. This is becase rows without e_blocks are rare and
|
||
|
// typically arise from regularization terms in the original
|
||
|
// optimization problem, and have a very different structure than the
|
||
|
// rows with e_blocks. Including them in the static structure
|
||
|
// detection will lead to most template parameters being set to
|
||
|
// dynamic. Since the number of rows without e_blocks is small, the
|
||
|
// lack of templating is not an issue.
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
NoEBlockRowOuterProduct(const BlockSparseMatrix* A,
|
||
|
int row_block_index,
|
||
|
BlockRandomAccessMatrix* lhs) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
const CompressedRow& row = bs->rows[row_block_index];
|
||
|
const double* values = A->values();
|
||
|
for (int i = 0; i < row.cells.size(); ++i) {
|
||
|
const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
|
||
|
DCHECK_GE(block1, 0);
|
||
|
|
||
|
const int block1_size = bs->cols[row.cells[i].block_id].size;
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block1, block1,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
// This multiply currently ignores the fact that this is a
|
||
|
// symmetric outer product.
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
cell_info->values, r, c, row_stride, col_stride);
|
||
|
}
|
||
|
|
||
|
for (int j = i + 1; j < row.cells.size(); ++j) {
|
||
|
const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
|
||
|
DCHECK_GE(block2, 0);
|
||
|
DCHECK_LT(block1, block2);
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block1, block2,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
const int block2_size = bs->cols[row.cells[j].block_id].size;
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
values + row.cells[j].position, row.block.size, block2_size,
|
||
|
cell_info->values, r, c, row_stride, col_stride);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For a row with an e_block, compute the contribition S += F'F. This
|
||
|
// function has the same structure as NoEBlockRowOuterProduct, except
|
||
|
// that this function uses the template parameters.
|
||
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
||
|
void
|
||
|
SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
||
|
EBlockRowOuterProduct(const BlockSparseMatrix* A,
|
||
|
int row_block_index,
|
||
|
BlockRandomAccessMatrix* lhs) {
|
||
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
||
|
const CompressedRow& row = bs->rows[row_block_index];
|
||
|
const double* values = A->values();
|
||
|
for (int i = 1; i < row.cells.size(); ++i) {
|
||
|
const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
|
||
|
DCHECK_GE(block1, 0);
|
||
|
|
||
|
const int block1_size = bs->cols[row.cells[i].block_id].size;
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block1, block1,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
// block += b1.transpose() * b1;
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
cell_info->values, r, c, row_stride, col_stride);
|
||
|
}
|
||
|
|
||
|
for (int j = i + 1; j < row.cells.size(); ++j) {
|
||
|
const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
|
||
|
DCHECK_GE(block2, 0);
|
||
|
DCHECK_LT(block1, block2);
|
||
|
const int block2_size = bs->cols[row.cells[j].block_id].size;
|
||
|
int r, c, row_stride, col_stride;
|
||
|
CellInfo* cell_info = lhs->GetCell(block1, block2,
|
||
|
&r, &c,
|
||
|
&row_stride, &col_stride);
|
||
|
if (cell_info != NULL) {
|
||
|
// block += b1.transpose() * b2;
|
||
|
CeresMutexLock l(&cell_info->m);
|
||
|
MatrixTransposeMatrixMultiply
|
||
|
<kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
|
||
|
values + row.cells[i].position, row.block.size, block1_size,
|
||
|
values + row.cells[j].position, row.block.size, block2_size,
|
||
|
cell_info->values, r, c, row_stride, col_stride);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
|