261 lines
10 KiB
C
261 lines
10 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
// mierle@gmail.com (Keir Mierle)
|
||
|
//
|
||
|
// This autodiff implementation differs from the one found in
|
||
|
// autodiff_cost_function.h by supporting autodiff on cost functions
|
||
|
// with variable numbers of parameters with variable sizes. With the
|
||
|
// other implementation, all the sizes (both the number of parameter
|
||
|
// blocks and the size of each block) must be fixed at compile time.
|
||
|
//
|
||
|
// The functor API differs slightly from the API for fixed size
|
||
|
// autodiff; the expected interface for the cost functors is:
|
||
|
//
|
||
|
// struct MyCostFunctor {
|
||
|
// template<typename T>
|
||
|
// bool operator()(T const* const* parameters, T* residuals) const {
|
||
|
// // Use parameters[i] to access the i'th parameter block.
|
||
|
// }
|
||
|
// }
|
||
|
//
|
||
|
// Since the sizing of the parameters is done at runtime, you must
|
||
|
// also specify the sizes after creating the dynamic autodiff cost
|
||
|
// function. For example:
|
||
|
//
|
||
|
// DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
|
||
|
// new MyCostFunctor());
|
||
|
// cost_function.AddParameterBlock(5);
|
||
|
// cost_function.AddParameterBlock(10);
|
||
|
// cost_function.SetNumResiduals(21);
|
||
|
//
|
||
|
// Under the hood, the implementation evaluates the cost function
|
||
|
// multiple times, computing a small set of the derivatives (four by
|
||
|
// default, controlled by the Stride template parameter) with each
|
||
|
// pass. There is a tradeoff with the size of the passes; you may want
|
||
|
// to experiment with the stride.
|
||
|
|
||
|
#ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
|
||
|
#define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <numeric>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "ceres/cost_function.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/jet.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
|
||
|
template <typename CostFunctor, int Stride = 4>
|
||
|
class DynamicAutoDiffCostFunction : public CostFunction {
|
||
|
public:
|
||
|
explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
|
||
|
: functor_(functor) {}
|
||
|
|
||
|
virtual ~DynamicAutoDiffCostFunction() {}
|
||
|
|
||
|
void AddParameterBlock(int size) {
|
||
|
mutable_parameter_block_sizes()->push_back(size);
|
||
|
}
|
||
|
|
||
|
void SetNumResiduals(int num_residuals) {
|
||
|
set_num_residuals(num_residuals);
|
||
|
}
|
||
|
|
||
|
virtual bool Evaluate(double const* const* parameters,
|
||
|
double* residuals,
|
||
|
double** jacobians) const {
|
||
|
CHECK_GT(num_residuals(), 0)
|
||
|
<< "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
|
||
|
<< "before DynamicAutoDiffCostFunction::Evaluate().";
|
||
|
|
||
|
if (jacobians == NULL) {
|
||
|
return (*functor_)(parameters, residuals);
|
||
|
}
|
||
|
|
||
|
// The difficulty with Jets, as implemented in Ceres, is that they were
|
||
|
// originally designed for strictly compile-sized use. At this point, there
|
||
|
// is a large body of code that assumes inside a cost functor it is
|
||
|
// acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
|
||
|
//
|
||
|
// Unfortunately, it is impossible to communicate the expected size of a
|
||
|
// dynamically sized jet to the static instantiations that existing code
|
||
|
// depends on.
|
||
|
//
|
||
|
// To work around this issue, the solution here is to evaluate the
|
||
|
// jacobians in a series of passes, each one computing Stripe *
|
||
|
// num_residuals() derivatives. This is done with small, fixed-size jets.
|
||
|
const int num_parameter_blocks = parameter_block_sizes().size();
|
||
|
const int num_parameters = std::accumulate(parameter_block_sizes().begin(),
|
||
|
parameter_block_sizes().end(),
|
||
|
0);
|
||
|
|
||
|
// Allocate scratch space for the strided evaluation.
|
||
|
std::vector<Jet<double, Stride> > input_jets(num_parameters);
|
||
|
std::vector<Jet<double, Stride> > output_jets(num_residuals());
|
||
|
|
||
|
// Make the parameter pack that is sent to the functor (reused).
|
||
|
std::vector<Jet<double, Stride>* > jet_parameters(num_parameter_blocks,
|
||
|
static_cast<Jet<double, Stride>* >(NULL));
|
||
|
int num_active_parameters = 0;
|
||
|
|
||
|
// To handle constant parameters between non-constant parameter blocks, the
|
||
|
// start position --- a raw parameter index --- of each contiguous block of
|
||
|
// non-constant parameters is recorded in start_derivative_section.
|
||
|
std::vector<int> start_derivative_section;
|
||
|
bool in_derivative_section = false;
|
||
|
int parameter_cursor = 0;
|
||
|
|
||
|
// Discover the derivative sections and set the parameter values.
|
||
|
for (int i = 0; i < num_parameter_blocks; ++i) {
|
||
|
jet_parameters[i] = &input_jets[parameter_cursor];
|
||
|
|
||
|
const int parameter_block_size = parameter_block_sizes()[i];
|
||
|
if (jacobians[i] != NULL) {
|
||
|
if (!in_derivative_section) {
|
||
|
start_derivative_section.push_back(parameter_cursor);
|
||
|
in_derivative_section = true;
|
||
|
}
|
||
|
|
||
|
num_active_parameters += parameter_block_size;
|
||
|
} else {
|
||
|
in_derivative_section = false;
|
||
|
}
|
||
|
|
||
|
for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
|
||
|
input_jets[parameter_cursor].a = parameters[i][j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// When `num_active_parameters % Stride != 0` then it can be the case
|
||
|
// that `active_parameter_count < Stride` while parameter_cursor is less
|
||
|
// than the total number of parameters and with no remaining non-constant
|
||
|
// parameter blocks. Pushing parameter_cursor (the total number of
|
||
|
// parameters) as a final entry to start_derivative_section is required
|
||
|
// because if a constant parameter block is encountered after the
|
||
|
// last non-constant block then current_derivative_section is incremented
|
||
|
// and would otherwise index an invalid position in
|
||
|
// start_derivative_section. Setting the final element to the total number
|
||
|
// of parameters means that this can only happen at most once in the loop
|
||
|
// below.
|
||
|
start_derivative_section.push_back(parameter_cursor);
|
||
|
|
||
|
// Evaluate all of the strides. Each stride is a chunk of the derivative to
|
||
|
// evaluate, typically some size proportional to the size of the SIMD
|
||
|
// registers of the CPU.
|
||
|
int num_strides = static_cast<int>(ceil(num_active_parameters /
|
||
|
static_cast<float>(Stride)));
|
||
|
|
||
|
int current_derivative_section = 0;
|
||
|
int current_derivative_section_cursor = 0;
|
||
|
|
||
|
for (int pass = 0; pass < num_strides; ++pass) {
|
||
|
// Set most of the jet components to zero, except for
|
||
|
// non-constant #Stride parameters.
|
||
|
const int initial_derivative_section = current_derivative_section;
|
||
|
const int initial_derivative_section_cursor =
|
||
|
current_derivative_section_cursor;
|
||
|
|
||
|
int active_parameter_count = 0;
|
||
|
parameter_cursor = 0;
|
||
|
|
||
|
for (int i = 0; i < num_parameter_blocks; ++i) {
|
||
|
for (int j = 0; j < parameter_block_sizes()[i];
|
||
|
++j, parameter_cursor++) {
|
||
|
input_jets[parameter_cursor].v.setZero();
|
||
|
if (active_parameter_count < Stride &&
|
||
|
parameter_cursor >= (
|
||
|
start_derivative_section[current_derivative_section] +
|
||
|
current_derivative_section_cursor)) {
|
||
|
if (jacobians[i] != NULL) {
|
||
|
input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
|
||
|
++active_parameter_count;
|
||
|
++current_derivative_section_cursor;
|
||
|
} else {
|
||
|
++current_derivative_section;
|
||
|
current_derivative_section_cursor = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Copy the pieces of the jacobians into their final place.
|
||
|
active_parameter_count = 0;
|
||
|
|
||
|
current_derivative_section = initial_derivative_section;
|
||
|
current_derivative_section_cursor = initial_derivative_section_cursor;
|
||
|
|
||
|
for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
|
||
|
for (int j = 0; j < parameter_block_sizes()[i];
|
||
|
++j, parameter_cursor++) {
|
||
|
if (active_parameter_count < Stride &&
|
||
|
parameter_cursor >= (
|
||
|
start_derivative_section[current_derivative_section] +
|
||
|
current_derivative_section_cursor)) {
|
||
|
if (jacobians[i] != NULL) {
|
||
|
for (int k = 0; k < num_residuals(); ++k) {
|
||
|
jacobians[i][k * parameter_block_sizes()[i] + j] =
|
||
|
output_jets[k].v[active_parameter_count];
|
||
|
}
|
||
|
++active_parameter_count;
|
||
|
++current_derivative_section_cursor;
|
||
|
} else {
|
||
|
++current_derivative_section;
|
||
|
current_derivative_section_cursor = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Only copy the residuals over once (even though we compute them on
|
||
|
// every loop).
|
||
|
if (pass == num_strides - 1) {
|
||
|
for (int k = 0; k < num_residuals(); ++k) {
|
||
|
residuals[k] = output_jets[k].a;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
internal::scoped_ptr<CostFunctor> functor_;
|
||
|
};
|
||
|
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
|