517 lines
15 KiB
C++
517 lines
15 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: moll.markus@arcor.de (Markus Moll)
|
||
|
// sameeragarwal@google.com (Sameer Agarwal)
|
||
|
|
||
|
#include "ceres/polynomial.h"
|
||
|
|
||
|
#include <limits>
|
||
|
#include <cmath>
|
||
|
#include <cstddef>
|
||
|
#include <algorithm>
|
||
|
#include "gtest/gtest.h"
|
||
|
#include "ceres/test_util.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::vector;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// For IEEE-754 doubles, machine precision is about 2e-16.
|
||
|
const double kEpsilon = 1e-13;
|
||
|
const double kEpsilonLoose = 1e-9;
|
||
|
|
||
|
// Return the constant polynomial p(x) = 1.23.
|
||
|
Vector ConstantPolynomial(double value) {
|
||
|
Vector poly(1);
|
||
|
poly(0) = value;
|
||
|
return poly;
|
||
|
}
|
||
|
|
||
|
// Return the polynomial p(x) = poly(x) * (x - root).
|
||
|
Vector AddRealRoot(const Vector& poly, double root) {
|
||
|
Vector poly2(poly.size() + 1);
|
||
|
poly2.setZero();
|
||
|
poly2.head(poly.size()) += poly;
|
||
|
poly2.tail(poly.size()) -= root * poly;
|
||
|
return poly2;
|
||
|
}
|
||
|
|
||
|
// Return the polynomial
|
||
|
// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
|
||
|
Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
|
||
|
Vector poly2(poly.size() + 2);
|
||
|
poly2.setZero();
|
||
|
// Multiply poly by x^2 - 2real + abs(real,imag)^2
|
||
|
poly2.head(poly.size()) += poly;
|
||
|
poly2.segment(1, poly.size()) -= 2 * real * poly;
|
||
|
poly2.tail(poly.size()) += (real*real + imag*imag) * poly;
|
||
|
return poly2;
|
||
|
}
|
||
|
|
||
|
// Sort the entries in a vector.
|
||
|
// Needed because the roots are not returned in sorted order.
|
||
|
Vector SortVector(const Vector& in) {
|
||
|
Vector out(in);
|
||
|
std::sort(out.data(), out.data() + out.size());
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
// Run a test with the polynomial defined by the N real roots in roots_real.
|
||
|
// If use_real is false, NULL is passed as the real argument to
|
||
|
// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
|
||
|
// imaginary argument to FindPolynomialRoots.
|
||
|
template<int N>
|
||
|
void RunPolynomialTestRealRoots(const double (&real_roots)[N],
|
||
|
bool use_real,
|
||
|
bool use_imaginary,
|
||
|
double epsilon) {
|
||
|
Vector real;
|
||
|
Vector imaginary;
|
||
|
Vector poly = ConstantPolynomial(1.23);
|
||
|
for (int i = 0; i < N; ++i) {
|
||
|
poly = AddRealRoot(poly, real_roots[i]);
|
||
|
}
|
||
|
Vector* const real_ptr = use_real ? &real : NULL;
|
||
|
Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
|
||
|
bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
|
||
|
|
||
|
EXPECT_EQ(success, true);
|
||
|
if (use_real) {
|
||
|
EXPECT_EQ(real.size(), N);
|
||
|
real = SortVector(real);
|
||
|
ExpectArraysClose(N, real.data(), real_roots, epsilon);
|
||
|
}
|
||
|
if (use_imaginary) {
|
||
|
EXPECT_EQ(imaginary.size(), N);
|
||
|
const Vector zeros = Vector::Zero(N);
|
||
|
ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
|
||
|
}
|
||
|
}
|
||
|
} // namespace
|
||
|
|
||
|
TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
|
||
|
// Vector poly(0) is an ambiguous constructor call, so
|
||
|
// use the constructor with explicit column count.
|
||
|
Vector poly(0, 1);
|
||
|
Vector real;
|
||
|
Vector imag;
|
||
|
bool success = FindPolynomialRoots(poly, &real, &imag);
|
||
|
|
||
|
EXPECT_EQ(success, false);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
|
||
|
Vector poly = ConstantPolynomial(1.23);
|
||
|
Vector real;
|
||
|
Vector imag;
|
||
|
bool success = FindPolynomialRoots(poly, &real, &imag);
|
||
|
|
||
|
EXPECT_EQ(success, true);
|
||
|
EXPECT_EQ(real.size(), 0);
|
||
|
EXPECT_EQ(imag.size(), 0);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
|
||
|
const double roots[1] = { 42.42 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
|
||
|
const double roots[1] = { -42.42 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {
|
||
|
const double roots[2] = { 1.0, 42.42 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {
|
||
|
const double roots[2] = { -42.42, 1.0 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {
|
||
|
const double roots[2] = { -42.42, -1.0 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {
|
||
|
const double roots[2] = { 42.42, 42.43 };
|
||
|
RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {
|
||
|
Vector real;
|
||
|
Vector imag;
|
||
|
|
||
|
Vector poly = ConstantPolynomial(1.23);
|
||
|
poly = AddComplexRootPair(poly, 42.42, 4.2);
|
||
|
bool success = FindPolynomialRoots(poly, &real, &imag);
|
||
|
|
||
|
EXPECT_EQ(success, true);
|
||
|
EXPECT_EQ(real.size(), 2);
|
||
|
EXPECT_EQ(imag.size(), 2);
|
||
|
ExpectClose(real(0), 42.42, kEpsilon);
|
||
|
ExpectClose(real(1), 42.42, kEpsilon);
|
||
|
ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
|
||
|
ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
|
||
|
ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuarticPolynomialWorks) {
|
||
|
const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
|
||
|
const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {
|
||
|
const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuarticMonomialWorks) {
|
||
|
const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };
|
||
|
RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, NullPointerAsImaginaryPartWorks) {
|
||
|
const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
|
||
|
RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, NullPointerAsRealPartWorks) {
|
||
|
const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
|
||
|
RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, BothOutputArgumentsNullWorks) {
|
||
|
const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
|
||
|
RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, DifferentiateConstantPolynomial) {
|
||
|
// p(x) = 1;
|
||
|
Vector polynomial(1);
|
||
|
polynomial(0) = 1.0;
|
||
|
const Vector derivative = DifferentiatePolynomial(polynomial);
|
||
|
EXPECT_EQ(derivative.rows(), 1);
|
||
|
EXPECT_EQ(derivative(0), 0);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, DifferentiateQuadraticPolynomial) {
|
||
|
// p(x) = x^2 + 2x + 3;
|
||
|
Vector polynomial(3);
|
||
|
polynomial(0) = 1.0;
|
||
|
polynomial(1) = 2.0;
|
||
|
polynomial(2) = 3.0;
|
||
|
|
||
|
const Vector derivative = DifferentiatePolynomial(polynomial);
|
||
|
EXPECT_EQ(derivative.rows(), 2);
|
||
|
EXPECT_EQ(derivative(0), 2.0);
|
||
|
EXPECT_EQ(derivative(1), 2.0);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, MinimizeConstantPolynomial) {
|
||
|
// p(x) = 1;
|
||
|
Vector polynomial(1);
|
||
|
polynomial(0) = 1.0;
|
||
|
|
||
|
double optimal_x = 0.0;
|
||
|
double optimal_value = 0.0;
|
||
|
double min_x = 0.0;
|
||
|
double max_x = 1.0;
|
||
|
MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
|
||
|
|
||
|
EXPECT_EQ(optimal_value, 1.0);
|
||
|
EXPECT_LE(optimal_x, max_x);
|
||
|
EXPECT_GE(optimal_x, min_x);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, MinimizeLinearPolynomial) {
|
||
|
// p(x) = x - 2
|
||
|
Vector polynomial(2);
|
||
|
|
||
|
polynomial(0) = 1.0;
|
||
|
polynomial(1) = 2.0;
|
||
|
|
||
|
double optimal_x = 0.0;
|
||
|
double optimal_value = 0.0;
|
||
|
double min_x = 0.0;
|
||
|
double max_x = 1.0;
|
||
|
MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
|
||
|
|
||
|
EXPECT_EQ(optimal_x, 0.0);
|
||
|
EXPECT_EQ(optimal_value, 2.0);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST(Polynomial, MinimizeQuadraticPolynomial) {
|
||
|
// p(x) = x^2 - 3 x + 2
|
||
|
// min_x = 3/2
|
||
|
// min_value = -1/4;
|
||
|
Vector polynomial(3);
|
||
|
polynomial(0) = 1.0;
|
||
|
polynomial(1) = -3.0;
|
||
|
polynomial(2) = 2.0;
|
||
|
|
||
|
double optimal_x = 0.0;
|
||
|
double optimal_value = 0.0;
|
||
|
double min_x = -2.0;
|
||
|
double max_x = 2.0;
|
||
|
MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
|
||
|
EXPECT_EQ(optimal_x, 3.0/2.0);
|
||
|
EXPECT_EQ(optimal_value, -1.0/4.0);
|
||
|
|
||
|
min_x = -2.0;
|
||
|
max_x = 1.0;
|
||
|
MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
|
||
|
EXPECT_EQ(optimal_x, 1.0);
|
||
|
EXPECT_EQ(optimal_value, 0.0);
|
||
|
|
||
|
min_x = 2.0;
|
||
|
max_x = 3.0;
|
||
|
MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
|
||
|
EXPECT_EQ(optimal_x, 2.0);
|
||
|
EXPECT_EQ(optimal_value, 0.0);
|
||
|
}
|
||
|
|
||
|
TEST(Polymomial, ConstantInterpolatingPolynomial) {
|
||
|
// p(x) = 1.0
|
||
|
Vector true_polynomial(1);
|
||
|
true_polynomial << 1.0;
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = 1.0;
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, LinearInterpolatingPolynomial) {
|
||
|
// p(x) = 2x - 1
|
||
|
Vector true_polynomial(2);
|
||
|
true_polynomial << 2.0, -1.0;
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = 1.0;
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = 2.0;
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, QuadraticInterpolatingPolynomial) {
|
||
|
// p(x) = 2x^2 + 3x + 2
|
||
|
Vector true_polynomial(3);
|
||
|
true_polynomial << 2.0, 3.0, 2.0;
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = 7.0;
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = 7.0;
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = -3.0;
|
||
|
sample.value = 11.0;
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {
|
||
|
// p(x) = 2x^2 + 3x + 2
|
||
|
Vector true_polynomial(4);
|
||
|
true_polynomial << 0.0, 2.0, 3.0, 2.0;
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = 7.0;
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = 7.0;
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = -3.0;
|
||
|
sample.value = 11.0;
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = -9;
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {
|
||
|
// p(x) = x^3 + 2x^2 + 3x + 2
|
||
|
Vector true_polynomial(4);
|
||
|
true_polynomial << 1.0, 2.0, 3.0, 2.0;
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = -3.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 2.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 0.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {
|
||
|
// p(x) = x^3 + 2x^2 + 3x + 2
|
||
|
Vector true_polynomial(4);
|
||
|
true_polynomial << 1.0, 2.0, 3.0, 2.0;
|
||
|
Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 1.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = -3.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 2.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
|
||
|
}
|
||
|
|
||
|
TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {
|
||
|
// p(x) = x^3 + 2x^2 + 3x + 2
|
||
|
Vector true_polynomial(4);
|
||
|
true_polynomial << 1.0, 2.0, 3.0, 2.0;
|
||
|
Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
|
||
|
|
||
|
vector<FunctionSample> samples;
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = -3.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FunctionSample sample;
|
||
|
sample.x = 2.0;
|
||
|
sample.value = EvaluatePolynomial(true_polynomial, sample.x);
|
||
|
sample.value_is_valid = true;
|
||
|
sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
|
||
|
sample.gradient_is_valid = true;
|
||
|
samples.push_back(sample);
|
||
|
}
|
||
|
|
||
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
||
|
EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|