382 lines
13 KiB
C
382 lines
13 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// Simple blas functions for use in the Schur Eliminator. These are
|
||
|
// fairly basic implementations which already yield a significant
|
||
|
// speedup in the eliminator performance.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_SMALL_BLAS_H_
|
||
|
#define CERES_INTERNAL_SMALL_BLAS_H_
|
||
|
|
||
|
#include "ceres/internal/port.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
// The following three macros are used to share code and reduce
|
||
|
// template junk across the various GEMM variants.
|
||
|
#define CERES_GEMM_BEGIN(name) \
|
||
|
template<int kRowA, int kColA, int kRowB, int kColB, int kOperation> \
|
||
|
inline void name(const double* A, \
|
||
|
const int num_row_a, \
|
||
|
const int num_col_a, \
|
||
|
const double* B, \
|
||
|
const int num_row_b, \
|
||
|
const int num_col_b, \
|
||
|
double* C, \
|
||
|
const int start_row_c, \
|
||
|
const int start_col_c, \
|
||
|
const int row_stride_c, \
|
||
|
const int col_stride_c)
|
||
|
|
||
|
#define CERES_GEMM_NAIVE_HEADER \
|
||
|
DCHECK_GT(num_row_a, 0); \
|
||
|
DCHECK_GT(num_col_a, 0); \
|
||
|
DCHECK_GT(num_row_b, 0); \
|
||
|
DCHECK_GT(num_col_b, 0); \
|
||
|
DCHECK_GE(start_row_c, 0); \
|
||
|
DCHECK_GE(start_col_c, 0); \
|
||
|
DCHECK_GT(row_stride_c, 0); \
|
||
|
DCHECK_GT(col_stride_c, 0); \
|
||
|
DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a)); \
|
||
|
DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a)); \
|
||
|
DCHECK((kRowB == Eigen::Dynamic) || (kRowB == num_row_b)); \
|
||
|
DCHECK((kColB == Eigen::Dynamic) || (kColB == num_col_b)); \
|
||
|
const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); \
|
||
|
const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); \
|
||
|
const int NUM_ROW_B = (kRowB != Eigen::Dynamic ? kRowB : num_row_b); \
|
||
|
const int NUM_COL_B = (kColB != Eigen::Dynamic ? kColB : num_col_b);
|
||
|
|
||
|
#define CERES_GEMM_EIGEN_HEADER \
|
||
|
const typename EigenTypes<kRowA, kColA>::ConstMatrixRef \
|
||
|
Aref(A, num_row_a, num_col_a); \
|
||
|
const typename EigenTypes<kRowB, kColB>::ConstMatrixRef \
|
||
|
Bref(B, num_row_b, num_col_b); \
|
||
|
MatrixRef Cref(C, row_stride_c, col_stride_c); \
|
||
|
|
||
|
#define CERES_CALL_GEMM(name) \
|
||
|
name<kRowA, kColA, kRowB, kColB, kOperation>( \
|
||
|
A, num_row_a, num_col_a, \
|
||
|
B, num_row_b, num_col_b, \
|
||
|
C, start_row_c, start_col_c, row_stride_c, col_stride_c);
|
||
|
|
||
|
|
||
|
// For the matrix-matrix functions below, there are three variants for
|
||
|
// each functionality. Foo, FooNaive and FooEigen. Foo is the one to
|
||
|
// be called by the user. FooNaive is a basic loop based
|
||
|
// implementation and FooEigen uses Eigen's implementation. Foo
|
||
|
// chooses between FooNaive and FooEigen depending on how many of the
|
||
|
// template arguments are fixed at compile time. Currently, FooEigen
|
||
|
// is called if all matrix dimensions are compile time
|
||
|
// constants. FooNaive is called otherwise. This leads to the best
|
||
|
// performance currently.
|
||
|
//
|
||
|
// The MatrixMatrixMultiply variants compute:
|
||
|
//
|
||
|
// C op A * B;
|
||
|
//
|
||
|
// The MatrixTransposeMatrixMultiply variants compute:
|
||
|
//
|
||
|
// C op A' * B
|
||
|
//
|
||
|
// where op can be +=, -=, or =.
|
||
|
//
|
||
|
// The template parameters (kRowA, kColA, kRowB, kColB) allow
|
||
|
// specialization of the loop at compile time. If this information is
|
||
|
// not available, then Eigen::Dynamic should be used as the template
|
||
|
// argument.
|
||
|
//
|
||
|
// kOperation = 1 -> C += A * B
|
||
|
// kOperation = -1 -> C -= A * B
|
||
|
// kOperation = 0 -> C = A * B
|
||
|
//
|
||
|
// The functions can write into matrices C which are larger than the
|
||
|
// matrix A * B. This is done by specifying the true size of C via
|
||
|
// row_stride_c and col_stride_c, and then indicating where A * B
|
||
|
// should be written into by start_row_c and start_col_c.
|
||
|
//
|
||
|
// Graphically if row_stride_c = 10, col_stride_c = 12, start_row_c =
|
||
|
// 4 and start_col_c = 5, then if A = 3x2 and B = 2x4, we get
|
||
|
//
|
||
|
// ------------
|
||
|
// ------------
|
||
|
// ------------
|
||
|
// ------------
|
||
|
// -----xxxx---
|
||
|
// -----xxxx---
|
||
|
// -----xxxx---
|
||
|
// ------------
|
||
|
// ------------
|
||
|
// ------------
|
||
|
//
|
||
|
CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen) {
|
||
|
CERES_GEMM_EIGEN_HEADER
|
||
|
Eigen::Block<MatrixRef, kRowA, kColB>
|
||
|
block(Cref, start_row_c, start_col_c, num_row_a, num_col_b);
|
||
|
|
||
|
if (kOperation > 0) {
|
||
|
block.noalias() += Aref * Bref;
|
||
|
} else if (kOperation < 0) {
|
||
|
block.noalias() -= Aref * Bref;
|
||
|
} else {
|
||
|
block.noalias() = Aref * Bref;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive) {
|
||
|
CERES_GEMM_NAIVE_HEADER
|
||
|
DCHECK_EQ(NUM_COL_A, NUM_ROW_B);
|
||
|
|
||
|
const int NUM_ROW_C = NUM_ROW_A;
|
||
|
const int NUM_COL_C = NUM_COL_B;
|
||
|
DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
|
||
|
DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
|
||
|
|
||
|
for (int row = 0; row < NUM_ROW_C; ++row) {
|
||
|
for (int col = 0; col < NUM_COL_C; ++col) {
|
||
|
double tmp = 0.0;
|
||
|
for (int k = 0; k < NUM_COL_A; ++k) {
|
||
|
tmp += A[row * NUM_COL_A + k] * B[k * NUM_COL_B + col];
|
||
|
}
|
||
|
|
||
|
const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
|
||
|
if (kOperation > 0) {
|
||
|
C[index] += tmp;
|
||
|
} else if (kOperation < 0) {
|
||
|
C[index] -= tmp;
|
||
|
} else {
|
||
|
C[index] = tmp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CERES_GEMM_BEGIN(MatrixMatrixMultiply) {
|
||
|
#ifdef CERES_NO_CUSTOM_BLAS
|
||
|
|
||
|
CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
|
||
|
return;
|
||
|
|
||
|
#else
|
||
|
|
||
|
if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
|
||
|
kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
|
||
|
CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
|
||
|
} else {
|
||
|
CERES_CALL_GEMM(MatrixMatrixMultiplyNaive)
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen) {
|
||
|
CERES_GEMM_EIGEN_HEADER
|
||
|
Eigen::Block<MatrixRef, kColA, kColB> block(Cref,
|
||
|
start_row_c, start_col_c,
|
||
|
num_col_a, num_col_b);
|
||
|
if (kOperation > 0) {
|
||
|
block.noalias() += Aref.transpose() * Bref;
|
||
|
} else if (kOperation < 0) {
|
||
|
block.noalias() -= Aref.transpose() * Bref;
|
||
|
} else {
|
||
|
block.noalias() = Aref.transpose() * Bref;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive) {
|
||
|
CERES_GEMM_NAIVE_HEADER
|
||
|
DCHECK_EQ(NUM_ROW_A, NUM_ROW_B);
|
||
|
|
||
|
const int NUM_ROW_C = NUM_COL_A;
|
||
|
const int NUM_COL_C = NUM_COL_B;
|
||
|
DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
|
||
|
DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
|
||
|
|
||
|
for (int row = 0; row < NUM_ROW_C; ++row) {
|
||
|
for (int col = 0; col < NUM_COL_C; ++col) {
|
||
|
double tmp = 0.0;
|
||
|
for (int k = 0; k < NUM_ROW_A; ++k) {
|
||
|
tmp += A[k * NUM_COL_A + row] * B[k * NUM_COL_B + col];
|
||
|
}
|
||
|
|
||
|
const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
|
||
|
if (kOperation > 0) {
|
||
|
C[index]+= tmp;
|
||
|
} else if (kOperation < 0) {
|
||
|
C[index]-= tmp;
|
||
|
} else {
|
||
|
C[index]= tmp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply) {
|
||
|
#ifdef CERES_NO_CUSTOM_BLAS
|
||
|
|
||
|
CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
|
||
|
return;
|
||
|
|
||
|
#else
|
||
|
|
||
|
if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
|
||
|
kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
|
||
|
CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
|
||
|
} else {
|
||
|
CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyNaive)
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Matrix-Vector multiplication
|
||
|
//
|
||
|
// c op A * b;
|
||
|
//
|
||
|
// where op can be +=, -=, or =.
|
||
|
//
|
||
|
// The template parameters (kRowA, kColA) allow specialization of the
|
||
|
// loop at compile time. If this information is not available, then
|
||
|
// Eigen::Dynamic should be used as the template argument.
|
||
|
//
|
||
|
// kOperation = 1 -> c += A' * b
|
||
|
// kOperation = -1 -> c -= A' * b
|
||
|
// kOperation = 0 -> c = A' * b
|
||
|
template<int kRowA, int kColA, int kOperation>
|
||
|
inline void MatrixVectorMultiply(const double* A,
|
||
|
const int num_row_a,
|
||
|
const int num_col_a,
|
||
|
const double* b,
|
||
|
double* c) {
|
||
|
#ifdef CERES_NO_CUSTOM_BLAS
|
||
|
const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
|
||
|
Aref(A, num_row_a, num_col_a);
|
||
|
const typename EigenTypes<kColA>::ConstVectorRef bref(b, num_col_a);
|
||
|
typename EigenTypes<kRowA>::VectorRef cref(c, num_row_a);
|
||
|
|
||
|
// lazyProduct works better than .noalias() for matrix-vector
|
||
|
// products.
|
||
|
if (kOperation > 0) {
|
||
|
cref += Aref.lazyProduct(bref);
|
||
|
} else if (kOperation < 0) {
|
||
|
cref -= Aref.lazyProduct(bref);
|
||
|
} else {
|
||
|
cref = Aref.lazyProduct(bref);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
DCHECK_GT(num_row_a, 0);
|
||
|
DCHECK_GT(num_col_a, 0);
|
||
|
DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
|
||
|
DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
|
||
|
|
||
|
const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
|
||
|
const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
|
||
|
|
||
|
for (int row = 0; row < NUM_ROW_A; ++row) {
|
||
|
double tmp = 0.0;
|
||
|
for (int col = 0; col < NUM_COL_A; ++col) {
|
||
|
tmp += A[row * NUM_COL_A + col] * b[col];
|
||
|
}
|
||
|
|
||
|
if (kOperation > 0) {
|
||
|
c[row] += tmp;
|
||
|
} else if (kOperation < 0) {
|
||
|
c[row] -= tmp;
|
||
|
} else {
|
||
|
c[row] = tmp;
|
||
|
}
|
||
|
}
|
||
|
#endif // CERES_NO_CUSTOM_BLAS
|
||
|
}
|
||
|
|
||
|
// Similar to MatrixVectorMultiply, except that A is transposed, i.e.,
|
||
|
//
|
||
|
// c op A' * b;
|
||
|
template<int kRowA, int kColA, int kOperation>
|
||
|
inline void MatrixTransposeVectorMultiply(const double* A,
|
||
|
const int num_row_a,
|
||
|
const int num_col_a,
|
||
|
const double* b,
|
||
|
double* c) {
|
||
|
#ifdef CERES_NO_CUSTOM_BLAS
|
||
|
const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
|
||
|
Aref(A, num_row_a, num_col_a);
|
||
|
const typename EigenTypes<kRowA>::ConstVectorRef bref(b, num_row_a);
|
||
|
typename EigenTypes<kColA>::VectorRef cref(c, num_col_a);
|
||
|
|
||
|
// lazyProduct works better than .noalias() for matrix-vector
|
||
|
// products.
|
||
|
if (kOperation > 0) {
|
||
|
cref += Aref.transpose().lazyProduct(bref);
|
||
|
} else if (kOperation < 0) {
|
||
|
cref -= Aref.transpose().lazyProduct(bref);
|
||
|
} else {
|
||
|
cref = Aref.transpose().lazyProduct(bref);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
DCHECK_GT(num_row_a, 0);
|
||
|
DCHECK_GT(num_col_a, 0);
|
||
|
DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
|
||
|
DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
|
||
|
|
||
|
const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
|
||
|
const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
|
||
|
|
||
|
for (int row = 0; row < NUM_COL_A; ++row) {
|
||
|
double tmp = 0.0;
|
||
|
for (int col = 0; col < NUM_ROW_A; ++col) {
|
||
|
tmp += A[col * NUM_COL_A + row] * b[col];
|
||
|
}
|
||
|
|
||
|
if (kOperation > 0) {
|
||
|
c[row] += tmp;
|
||
|
} else if (kOperation < 0) {
|
||
|
c[row] -= tmp;
|
||
|
} else {
|
||
|
c[row] = tmp;
|
||
|
}
|
||
|
}
|
||
|
#endif // CERES_NO_CUSTOM_BLAS
|
||
|
}
|
||
|
|
||
|
#undef CERES_GEMM_BEGIN
|
||
|
#undef CERES_GEMM_EIGEN_HEADER
|
||
|
#undef CERES_GEMM_NAIVE_HEADER
|
||
|
#undef CERES_CALL_GEMM
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_SMALL_BLAS_H_
|