307 lines
13 KiB
C
307 lines
13 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// A simple C++ interface to the SuiteSparse and CHOLMOD libraries.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_SUITESPARSE_H_
|
||
|
#define CERES_INTERNAL_SUITESPARSE_H_
|
||
|
|
||
|
// This include must come before any #ifndef check on Ceres compile options.
|
||
|
#include "ceres/internal/port.h"
|
||
|
|
||
|
#ifndef CERES_NO_SUITESPARSE
|
||
|
|
||
|
#include <cstring>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "ceres/linear_solver.h"
|
||
|
#include "cholmod.h"
|
||
|
#include "glog/logging.h"
|
||
|
#include "SuiteSparseQR.hpp"
|
||
|
|
||
|
// Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
|
||
|
// if SuiteSparse was compiled with Metis support. This makes
|
||
|
// calling and linking into cholmod_camd problematic even though it
|
||
|
// has nothing to do with Metis. This has been fixed reliably in
|
||
|
// 4.2.0.
|
||
|
//
|
||
|
// The fix was actually committed in 4.1.0, but there is
|
||
|
// some confusion about a silent update to the tar ball, so we are
|
||
|
// being conservative and choosing the next minor version where
|
||
|
// things are stable.
|
||
|
#if (SUITESPARSE_VERSION < 4002)
|
||
|
#define CERES_NO_CAMD
|
||
|
#endif
|
||
|
|
||
|
// UF_long is deprecated but SuiteSparse_long is only available in
|
||
|
// newer versions of SuiteSparse. So for older versions of
|
||
|
// SuiteSparse, we define SuiteSparse_long to be the same as UF_long,
|
||
|
// which is what recent versions of SuiteSparse do anyways.
|
||
|
#ifndef SuiteSparse_long
|
||
|
#define SuiteSparse_long UF_long
|
||
|
#endif
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
class CompressedRowSparseMatrix;
|
||
|
class TripletSparseMatrix;
|
||
|
|
||
|
// The raw CHOLMOD and SuiteSparseQR libraries have a slightly
|
||
|
// cumbersome c like calling format. This object abstracts it away and
|
||
|
// provides the user with a simpler interface. The methods here cannot
|
||
|
// be static as a cholmod_common object serves as a global variable
|
||
|
// for all cholmod function calls.
|
||
|
class SuiteSparse {
|
||
|
public:
|
||
|
SuiteSparse();
|
||
|
~SuiteSparse();
|
||
|
|
||
|
// Functions for building cholmod_sparse objects from sparse
|
||
|
// matrices stored in triplet form. The matrix A is not
|
||
|
// modifed. Called owns the result.
|
||
|
cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);
|
||
|
|
||
|
// This function works like CreateSparseMatrix, except that the
|
||
|
// return value corresponds to A' rather than A.
|
||
|
cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);
|
||
|
|
||
|
// Create a cholmod_sparse wrapper around the contents of A. This is
|
||
|
// a shallow object, which refers to the contents of A and does not
|
||
|
// use the SuiteSparse machinery to allocate memory.
|
||
|
cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
|
||
|
|
||
|
// Given a vector x, build a cholmod_dense vector of size out_size
|
||
|
// with the first in_size entries copied from x. If x is NULL, then
|
||
|
// an all zeros vector is returned. Caller owns the result.
|
||
|
cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);
|
||
|
|
||
|
// The matrix A is scaled using the matrix whose diagonal is the
|
||
|
// vector scale. mode describes how scaling is applied. Possible
|
||
|
// values are CHOLMOD_ROW for row scaling - diag(scale) * A,
|
||
|
// CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
|
||
|
// for symmetric scaling which scales both the rows and the columns
|
||
|
// - diag(scale) * A * diag(scale).
|
||
|
void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
|
||
|
cholmod_scale(scale, mode, A, &cc_);
|
||
|
}
|
||
|
|
||
|
// Create and return a matrix m = A * A'. Caller owns the
|
||
|
// result. The matrix A is not modified.
|
||
|
cholmod_sparse* AATranspose(cholmod_sparse* A) {
|
||
|
cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_);
|
||
|
m->stype = 1; // Pay attention to the upper triangular part.
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
// y = alpha * A * x + beta * y. Only y is modified.
|
||
|
void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
|
||
|
cholmod_dense* x, cholmod_dense* y) {
|
||
|
double alpha_[2] = {alpha, 0};
|
||
|
double beta_[2] = {beta, 0};
|
||
|
cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
|
||
|
}
|
||
|
|
||
|
// Find an ordering of A or AA' (if A is unsymmetric) that minimizes
|
||
|
// the fill-in in the Cholesky factorization of the corresponding
|
||
|
// matrix. This is done by using the AMD algorithm.
|
||
|
//
|
||
|
// Using this ordering, the symbolic Cholesky factorization of A (or
|
||
|
// AA') is computed and returned.
|
||
|
//
|
||
|
// A is not modified, only the pattern of non-zeros of A is used,
|
||
|
// the actual numerical values in A are of no consequence.
|
||
|
//
|
||
|
// message contains an explanation of the failures if any.
|
||
|
//
|
||
|
// Caller owns the result.
|
||
|
cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, std::string* message);
|
||
|
|
||
|
cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
|
||
|
const std::vector<int>& row_blocks,
|
||
|
const std::vector<int>& col_blocks,
|
||
|
std::string* message);
|
||
|
|
||
|
// If A is symmetric, then compute the symbolic Cholesky
|
||
|
// factorization of A(ordering, ordering). If A is unsymmetric, then
|
||
|
// compute the symbolic factorization of
|
||
|
// A(ordering,:) A(ordering,:)'.
|
||
|
//
|
||
|
// A is not modified, only the pattern of non-zeros of A is used,
|
||
|
// the actual numerical values in A are of no consequence.
|
||
|
//
|
||
|
// message contains an explanation of the failures if any.
|
||
|
//
|
||
|
// Caller owns the result.
|
||
|
cholmod_factor* AnalyzeCholeskyWithUserOrdering(
|
||
|
cholmod_sparse* A,
|
||
|
const std::vector<int>& ordering,
|
||
|
std::string* message);
|
||
|
|
||
|
// Perform a symbolic factorization of A without re-ordering A. No
|
||
|
// postordering of the elimination tree is performed. This ensures
|
||
|
// that the symbolic factor does not introduce an extra permutation
|
||
|
// on the matrix. See the documentation for CHOLMOD for more details.
|
||
|
//
|
||
|
// message contains an explanation of the failures if any.
|
||
|
cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,
|
||
|
std::string* message);
|
||
|
|
||
|
// Use the symbolic factorization in L, to find the numerical
|
||
|
// factorization for the matrix A or AA^T. Return true if
|
||
|
// successful, false otherwise. L contains the numeric factorization
|
||
|
// on return.
|
||
|
//
|
||
|
// message contains an explanation of the failures if any.
|
||
|
LinearSolverTerminationType Cholesky(cholmod_sparse* A,
|
||
|
cholmod_factor* L,
|
||
|
std::string* message);
|
||
|
|
||
|
// Given a Cholesky factorization of a matrix A = LL^T, solve the
|
||
|
// linear system Ax = b, and return the result. If the Solve fails
|
||
|
// NULL is returned. Caller owns the result.
|
||
|
//
|
||
|
// message contains an explanation of the failures if any.
|
||
|
cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, std::string* message);
|
||
|
|
||
|
// By virtue of the modeling layer in Ceres being block oriented,
|
||
|
// all the matrices used by Ceres are also block oriented. When
|
||
|
// doing sparse direct factorization of these matrices the
|
||
|
// fill-reducing ordering algorithms (in particular AMD) can either
|
||
|
// be run on the block or the scalar form of these matrices. The two
|
||
|
// SuiteSparse::AnalyzeCholesky methods allows the the client to
|
||
|
// compute the symbolic factorization of a matrix by either using
|
||
|
// AMD on the matrix or a user provided ordering of the rows.
|
||
|
//
|
||
|
// But since the underlying matrices are block oriented, it is worth
|
||
|
// running AMD on just the block structre of these matrices and then
|
||
|
// lifting these block orderings to a full scalar ordering. This
|
||
|
// preserves the block structure of the permuted matrix, and exposes
|
||
|
// more of the super-nodal structure of the matrix to the numerical
|
||
|
// factorization routines.
|
||
|
//
|
||
|
// Find the block oriented AMD ordering of a matrix A, whose row and
|
||
|
// column blocks are given by row_blocks, and col_blocks
|
||
|
// respectively. The matrix may or may not be symmetric. The entries
|
||
|
// of col_blocks do not need to sum to the number of columns in
|
||
|
// A. If this is the case, only the first sum(col_blocks) are used
|
||
|
// to compute the ordering.
|
||
|
bool BlockAMDOrdering(const cholmod_sparse* A,
|
||
|
const std::vector<int>& row_blocks,
|
||
|
const std::vector<int>& col_blocks,
|
||
|
std::vector<int>* ordering);
|
||
|
|
||
|
// Find a fill reducing approximate minimum degree
|
||
|
// ordering. ordering is expected to be large enough to hold the
|
||
|
// ordering.
|
||
|
bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);
|
||
|
|
||
|
|
||
|
// Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
|
||
|
// if SuiteSparse was compiled with Metis support. This makes
|
||
|
// calling and linking into cholmod_camd problematic even though it
|
||
|
// has nothing to do with Metis. This has been fixed reliably in
|
||
|
// 4.2.0.
|
||
|
//
|
||
|
// The fix was actually committed in 4.1.0, but there is
|
||
|
// some confusion about a silent update to the tar ball, so we are
|
||
|
// being conservative and choosing the next minor version where
|
||
|
// things are stable.
|
||
|
static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
|
||
|
return (SUITESPARSE_VERSION > 4001);
|
||
|
}
|
||
|
|
||
|
// Find a fill reducing approximate minimum degree
|
||
|
// ordering. constraints is an array which associates with each
|
||
|
// column of the matrix an elimination group. i.e., all columns in
|
||
|
// group 0 are eliminated first, all columns in group 1 are
|
||
|
// eliminated next etc. This function finds a fill reducing ordering
|
||
|
// that obeys these constraints.
|
||
|
//
|
||
|
// Calling ApproximateMinimumDegreeOrdering is equivalent to calling
|
||
|
// ConstrainedApproximateMinimumDegreeOrdering with a constraint
|
||
|
// array that puts all columns in the same elimination group.
|
||
|
//
|
||
|
// If CERES_NO_CAMD is defined then calling this function will
|
||
|
// result in a crash.
|
||
|
bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
|
||
|
int* constraints,
|
||
|
int* ordering);
|
||
|
|
||
|
void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
|
||
|
void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); }
|
||
|
void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }
|
||
|
|
||
|
void Print(cholmod_sparse* m, const std::string& name) {
|
||
|
cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
|
||
|
}
|
||
|
|
||
|
void Print(cholmod_dense* m, const std::string& name) {
|
||
|
cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
|
||
|
}
|
||
|
|
||
|
void Print(cholmod_triplet* m, const std::string& name) {
|
||
|
cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
|
||
|
}
|
||
|
|
||
|
cholmod_common* mutable_cc() { return &cc_; }
|
||
|
|
||
|
private:
|
||
|
cholmod_common cc_;
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#else // CERES_NO_SUITESPARSE
|
||
|
|
||
|
typedef void cholmod_factor;
|
||
|
|
||
|
class SuiteSparse {
|
||
|
public:
|
||
|
// Defining this static function even when SuiteSparse is not
|
||
|
// available, allows client code to check for the presence of CAMD
|
||
|
// without checking for the absence of the CERES_NO_CAMD symbol.
|
||
|
//
|
||
|
// This is safer because the symbol maybe missing due to a user
|
||
|
// accidently not including suitesparse.h in their code when
|
||
|
// checking for the symbol.
|
||
|
static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void Free(void* arg) {}
|
||
|
};
|
||
|
|
||
|
#endif // CERES_NO_SUITESPARSE
|
||
|
|
||
|
#endif // CERES_INTERNAL_SUITESPARSE_H_
|