86 lines
3.2 KiB
C
86 lines
3.2 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://code.google.com/p/ceres-solver/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: vitus@google.com (Michael Vitus)
|
||
|
|
||
|
#ifndef CERES_PUBLIC_HOUSEHOLDER_VECTOR_H_
|
||
|
#define CERES_PUBLIC_HOUSEHOLDER_VECTOR_H_
|
||
|
|
||
|
#include "Eigen/Core"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
// Algorithm 5.1.1 from 'Matrix Computations' by Golub et al. (Johns Hopkins
|
||
|
// Studies in Mathematical Sciences) but using the nth element of the input
|
||
|
// vector as pivot instead of first. This computes the vector v with v(n) = 1
|
||
|
// and beta such that H = I - beta * v * v^T is orthogonal and
|
||
|
// H * x = ||x||_2 * e_n.
|
||
|
template <typename Scalar>
|
||
|
void ComputeHouseholderVector(const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>& x,
|
||
|
Eigen::Matrix<Scalar, Eigen::Dynamic, 1>* v,
|
||
|
Scalar* beta) {
|
||
|
CHECK_NOTNULL(beta);
|
||
|
CHECK_NOTNULL(v);
|
||
|
CHECK_GT(x.rows(), 1);
|
||
|
CHECK_EQ(x.rows(), v->rows());
|
||
|
|
||
|
Scalar sigma = x.head(x.rows() - 1).squaredNorm();
|
||
|
*v = x;
|
||
|
(*v)(v->rows() - 1) = Scalar(1.0);
|
||
|
|
||
|
*beta = Scalar(0.0);
|
||
|
const Scalar& x_pivot = x(x.rows() - 1);
|
||
|
|
||
|
if (sigma <= Scalar(std::numeric_limits<double>::epsilon())) {
|
||
|
if (x_pivot < Scalar(0.0)) {
|
||
|
*beta = Scalar(2.0);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const Scalar mu = sqrt(x_pivot * x_pivot + sigma);
|
||
|
Scalar v_pivot = Scalar(1.0);
|
||
|
|
||
|
if (x_pivot <= Scalar(0.0)) {
|
||
|
v_pivot = x_pivot - mu;
|
||
|
} else {
|
||
|
v_pivot = -sigma / (x_pivot + mu);
|
||
|
}
|
||
|
|
||
|
*beta = Scalar(2.0) * v_pivot * v_pivot / (sigma + v_pivot * v_pivot);
|
||
|
|
||
|
v->head(v->rows() - 1) /= v_pivot;
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_PUBLIC_HOUSEHOLDER_VECTOR_H_
|