170 lines
5.1 KiB
C++
170 lines
5.1 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: keir@google.com (Keir Mierle)
|
||
|
//
|
||
|
// TODO(keir): Implement a generic "compare sparse matrix implementations" test
|
||
|
// suite that can compare all the implementations. Then this file would shrink
|
||
|
// in size.
|
||
|
|
||
|
#include "ceres/dense_sparse_matrix.h"
|
||
|
|
||
|
#include "ceres/casts.h"
|
||
|
#include "ceres/linear_least_squares_problems.h"
|
||
|
#include "ceres/triplet_sparse_matrix.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "glog/logging.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
|
||
|
EXPECT_EQ(a->num_rows(), b->num_rows());
|
||
|
EXPECT_EQ(a->num_cols(), b->num_cols());
|
||
|
|
||
|
int num_rows = a->num_rows();
|
||
|
int num_cols = a->num_cols();
|
||
|
|
||
|
for (int i = 0; i < num_cols; ++i) {
|
||
|
Vector x = Vector::Zero(num_cols);
|
||
|
x(i) = 1.0;
|
||
|
|
||
|
Vector y_a = Vector::Zero(num_rows);
|
||
|
Vector y_b = Vector::Zero(num_rows);
|
||
|
|
||
|
a->RightMultiply(x.data(), y_a.data());
|
||
|
b->RightMultiply(x.data(), y_b.data());
|
||
|
|
||
|
EXPECT_EQ((y_a - y_b).norm(), 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class DenseSparseMatrixTest : public ::testing::Test {
|
||
|
protected :
|
||
|
virtual void SetUp() {
|
||
|
scoped_ptr<LinearLeastSquaresProblem> problem(
|
||
|
CreateLinearLeastSquaresProblemFromId(1));
|
||
|
|
||
|
CHECK_NOTNULL(problem.get());
|
||
|
|
||
|
tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
|
||
|
dsm.reset(new DenseSparseMatrix(*tsm));
|
||
|
|
||
|
num_rows = tsm->num_rows();
|
||
|
num_cols = tsm->num_cols();
|
||
|
}
|
||
|
|
||
|
int num_rows;
|
||
|
int num_cols;
|
||
|
|
||
|
scoped_ptr<TripletSparseMatrix> tsm;
|
||
|
scoped_ptr<DenseSparseMatrix> dsm;
|
||
|
};
|
||
|
|
||
|
TEST_F(DenseSparseMatrixTest, RightMultiply) {
|
||
|
CompareMatrices(tsm.get(), dsm.get());
|
||
|
|
||
|
// Try with a not entirely zero vector to verify column interactions, which
|
||
|
// could be masked by a subtle bug when using the elementary vectors.
|
||
|
Vector a(num_cols);
|
||
|
for (int i = 0; i < num_cols; i++) {
|
||
|
a(i) = i;
|
||
|
}
|
||
|
Vector b1 = Vector::Zero(num_rows);
|
||
|
Vector b2 = Vector::Zero(num_rows);
|
||
|
|
||
|
tsm->RightMultiply(a.data(), b1.data());
|
||
|
dsm->RightMultiply(a.data(), b2.data());
|
||
|
|
||
|
EXPECT_EQ((b1 - b2).norm(), 0);
|
||
|
}
|
||
|
|
||
|
TEST_F(DenseSparseMatrixTest, LeftMultiply) {
|
||
|
for (int i = 0; i < num_rows; ++i) {
|
||
|
Vector a = Vector::Zero(num_rows);
|
||
|
a(i) = 1.0;
|
||
|
|
||
|
Vector b1 = Vector::Zero(num_cols);
|
||
|
Vector b2 = Vector::Zero(num_cols);
|
||
|
|
||
|
tsm->LeftMultiply(a.data(), b1.data());
|
||
|
dsm->LeftMultiply(a.data(), b2.data());
|
||
|
|
||
|
EXPECT_EQ((b1 - b2).norm(), 0);
|
||
|
}
|
||
|
|
||
|
// Try with a not entirely zero vector to verify column interactions, which
|
||
|
// could be masked by a subtle bug when using the elementary vectors.
|
||
|
Vector a(num_rows);
|
||
|
for (int i = 0; i < num_rows; i++) {
|
||
|
a(i) = i;
|
||
|
}
|
||
|
Vector b1 = Vector::Zero(num_cols);
|
||
|
Vector b2 = Vector::Zero(num_cols);
|
||
|
|
||
|
tsm->LeftMultiply(a.data(), b1.data());
|
||
|
dsm->LeftMultiply(a.data(), b2.data());
|
||
|
|
||
|
EXPECT_EQ((b1 - b2).norm(), 0);
|
||
|
}
|
||
|
|
||
|
TEST_F(DenseSparseMatrixTest, ColumnNorm) {
|
||
|
Vector b1 = Vector::Zero(num_cols);
|
||
|
Vector b2 = Vector::Zero(num_cols);
|
||
|
|
||
|
tsm->SquaredColumnNorm(b1.data());
|
||
|
dsm->SquaredColumnNorm(b2.data());
|
||
|
|
||
|
EXPECT_EQ((b1 - b2).norm(), 0);
|
||
|
}
|
||
|
|
||
|
TEST_F(DenseSparseMatrixTest, Scale) {
|
||
|
Vector scale(num_cols);
|
||
|
for (int i = 0; i < num_cols; ++i) {
|
||
|
scale(i) = i + 1;
|
||
|
}
|
||
|
tsm->ScaleColumns(scale.data());
|
||
|
dsm->ScaleColumns(scale.data());
|
||
|
CompareMatrices(tsm.get(), dsm.get());
|
||
|
}
|
||
|
|
||
|
TEST_F(DenseSparseMatrixTest, ToDenseMatrix) {
|
||
|
Matrix tsm_dense;
|
||
|
Matrix dsm_dense;
|
||
|
|
||
|
tsm->ToDenseMatrix(&tsm_dense);
|
||
|
dsm->ToDenseMatrix(&dsm_dense);
|
||
|
|
||
|
EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0);
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|