MYNT-EYE-S-SDK/3rdparty/ceres-solver-1.11.0/data/nist/MGH17.dat

94 lines
3.1 KiB
Plaintext
Raw Normal View History

2019-01-03 10:25:18 +02:00
NIST/ITL StRD
Dataset Name: MGH17 (MGH17.dat)
File Format: ASCII
Starting Values (lines 41 to 45)
Certified Values (lines 41 to 50)
Data (lines 61 to 93)
Procedure: Nonlinear Least Squares Regression
Description: This problem was found to be difficult for some very
good algorithms.
See More, J. J., Garbow, B. S., and Hillstrom, K. E.
(1981). Testing unconstrained optimization software.
ACM Transactions on Mathematical Software. 7(1):
pp. 17-41.
Reference: Osborne, M. R. (1972).
Some aspects of nonlinear least squares
calculations. In Numerical Methods for Nonlinear
Optimization, Lootsma (Ed).
New York, NY: Academic Press, pp. 171-189.
Data: 1 Response (y)
1 Predictor (x)
33 Observations
Average Level of Difficulty
Generated Data
Model: Exponential Class
5 Parameters (b1 to b5)
y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5] + e
Starting values Certified Values
Start 1 Start 2 Parameter Standard Deviation
b1 = 50 0.5 3.7541005211E-01 2.0723153551E-03
b2 = 150 1.5 1.9358469127E+00 2.2031669222E-01
b3 = -100 -1 -1.4646871366E+00 2.2175707739E-01
b4 = 1 0.01 1.2867534640E-02 4.4861358114E-04
b5 = 2 0.02 2.2122699662E-02 8.9471996575E-04
Residual Sum of Squares: 5.4648946975E-05
Residual Standard Deviation: 1.3970497866E-03
Degrees of Freedom: 28
Number of Observations: 33
Data: y x
8.440000E-01 0.000000E+00
9.080000E-01 1.000000E+01
9.320000E-01 2.000000E+01
9.360000E-01 3.000000E+01
9.250000E-01 4.000000E+01
9.080000E-01 5.000000E+01
8.810000E-01 6.000000E+01
8.500000E-01 7.000000E+01
8.180000E-01 8.000000E+01
7.840000E-01 9.000000E+01
7.510000E-01 1.000000E+02
7.180000E-01 1.100000E+02
6.850000E-01 1.200000E+02
6.580000E-01 1.300000E+02
6.280000E-01 1.400000E+02
6.030000E-01 1.500000E+02
5.800000E-01 1.600000E+02
5.580000E-01 1.700000E+02
5.380000E-01 1.800000E+02
5.220000E-01 1.900000E+02
5.060000E-01 2.000000E+02
4.900000E-01 2.100000E+02
4.780000E-01 2.200000E+02
4.670000E-01 2.300000E+02
4.570000E-01 2.400000E+02
4.480000E-01 2.500000E+02
4.380000E-01 2.600000E+02
4.310000E-01 2.700000E+02
4.240000E-01 2.800000E+02
4.200000E-01 2.900000E+02
4.140000E-01 3.000000E+02
4.110000E-01 3.100000E+02
4.060000E-01 3.200000E+02