248 lines
8.7 KiB
C++
248 lines
8.7 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: David Gallup (dgallup@google.com)
|
||
|
// Sameer Agarwal (sameeragarwal@google.com)
|
||
|
|
||
|
// This include must come before any #ifndef check on Ceres compile options.
|
||
|
#include "ceres/internal/port.h"
|
||
|
|
||
|
#ifndef CERES_NO_SUITESPARSE
|
||
|
|
||
|
#include "ceres/canonical_views_clustering.h"
|
||
|
|
||
|
#include "ceres/collections_port.h"
|
||
|
#include "ceres/graph.h"
|
||
|
#include "ceres/internal/macros.h"
|
||
|
#include "ceres/map_util.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::vector;
|
||
|
|
||
|
typedef HashMap<int, int> IntMap;
|
||
|
typedef HashSet<int> IntSet;
|
||
|
|
||
|
class CanonicalViewsClustering {
|
||
|
public:
|
||
|
CanonicalViewsClustering() {}
|
||
|
|
||
|
// Compute the canonical views clustering of the vertices of the
|
||
|
// graph. centers will contain the vertices that are the identified
|
||
|
// as the canonical views/cluster centers, and membership is a map
|
||
|
// from vertices to cluster_ids. The i^th cluster center corresponds
|
||
|
// to the i^th cluster. It is possible depending on the
|
||
|
// configuration of the clustering algorithm that some of the
|
||
|
// vertices may not be assigned to any cluster. In this case they
|
||
|
// are assigned to a cluster with id = kInvalidClusterId.
|
||
|
void ComputeClustering(const CanonicalViewsClusteringOptions& options,
|
||
|
const WeightedGraph<int>& graph,
|
||
|
vector<int>* centers,
|
||
|
IntMap* membership);
|
||
|
|
||
|
private:
|
||
|
void FindValidViews(IntSet* valid_views) const;
|
||
|
double ComputeClusteringQualityDifference(const int candidate,
|
||
|
const vector<int>& centers) const;
|
||
|
void UpdateCanonicalViewAssignments(const int canonical_view);
|
||
|
void ComputeClusterMembership(const vector<int>& centers,
|
||
|
IntMap* membership) const;
|
||
|
|
||
|
CanonicalViewsClusteringOptions options_;
|
||
|
const WeightedGraph<int>* graph_;
|
||
|
// Maps a view to its representative canonical view (its cluster
|
||
|
// center).
|
||
|
IntMap view_to_canonical_view_;
|
||
|
// Maps a view to its similarity to its current cluster center.
|
||
|
HashMap<int, double> view_to_canonical_view_similarity_;
|
||
|
CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering);
|
||
|
};
|
||
|
|
||
|
void ComputeCanonicalViewsClustering(
|
||
|
const CanonicalViewsClusteringOptions& options,
|
||
|
const WeightedGraph<int>& graph,
|
||
|
vector<int>* centers,
|
||
|
IntMap* membership) {
|
||
|
time_t start_time = time(NULL);
|
||
|
CanonicalViewsClustering cv;
|
||
|
cv.ComputeClustering(options, graph, centers, membership);
|
||
|
VLOG(2) << "Canonical views clustering time (secs): "
|
||
|
<< time(NULL) - start_time;
|
||
|
}
|
||
|
|
||
|
// Implementation of CanonicalViewsClustering
|
||
|
void CanonicalViewsClustering::ComputeClustering(
|
||
|
const CanonicalViewsClusteringOptions& options,
|
||
|
const WeightedGraph<int>& graph,
|
||
|
vector<int>* centers,
|
||
|
IntMap* membership) {
|
||
|
options_ = options;
|
||
|
CHECK_NOTNULL(centers)->clear();
|
||
|
CHECK_NOTNULL(membership)->clear();
|
||
|
graph_ = &graph;
|
||
|
|
||
|
IntSet valid_views;
|
||
|
FindValidViews(&valid_views);
|
||
|
while (valid_views.size() > 0) {
|
||
|
// Find the next best canonical view.
|
||
|
double best_difference = -std::numeric_limits<double>::max();
|
||
|
int best_view = 0;
|
||
|
|
||
|
// TODO(sameeragarwal): Make this loop multi-threaded.
|
||
|
for (IntSet::const_iterator view = valid_views.begin();
|
||
|
view != valid_views.end();
|
||
|
++view) {
|
||
|
const double difference =
|
||
|
ComputeClusteringQualityDifference(*view, *centers);
|
||
|
if (difference > best_difference) {
|
||
|
best_difference = difference;
|
||
|
best_view = *view;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CHECK_GT(best_difference, -std::numeric_limits<double>::max());
|
||
|
|
||
|
// Add canonical view if quality improves, or if minimum is not
|
||
|
// yet met, otherwise break.
|
||
|
if ((best_difference <= 0) &&
|
||
|
(centers->size() >= options_.min_views)) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
centers->push_back(best_view);
|
||
|
valid_views.erase(best_view);
|
||
|
UpdateCanonicalViewAssignments(best_view);
|
||
|
}
|
||
|
|
||
|
ComputeClusterMembership(*centers, membership);
|
||
|
}
|
||
|
|
||
|
// Return the set of vertices of the graph which have valid vertex
|
||
|
// weights.
|
||
|
void CanonicalViewsClustering::FindValidViews(
|
||
|
IntSet* valid_views) const {
|
||
|
const IntSet& views = graph_->vertices();
|
||
|
for (IntSet::const_iterator view = views.begin();
|
||
|
view != views.end();
|
||
|
++view) {
|
||
|
if (graph_->VertexWeight(*view) != WeightedGraph<int>::InvalidWeight()) {
|
||
|
valid_views->insert(*view);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Computes the difference in the quality score if 'candidate' were
|
||
|
// added to the set of canonical views.
|
||
|
double CanonicalViewsClustering::ComputeClusteringQualityDifference(
|
||
|
const int candidate,
|
||
|
const vector<int>& centers) const {
|
||
|
// View score.
|
||
|
double difference =
|
||
|
options_.view_score_weight * graph_->VertexWeight(candidate);
|
||
|
|
||
|
// Compute how much the quality score changes if the candidate view
|
||
|
// was added to the list of canonical views and its nearest
|
||
|
// neighbors became members of its cluster.
|
||
|
const IntSet& neighbors = graph_->Neighbors(candidate);
|
||
|
for (IntSet::const_iterator neighbor = neighbors.begin();
|
||
|
neighbor != neighbors.end();
|
||
|
++neighbor) {
|
||
|
const double old_similarity =
|
||
|
FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
|
||
|
const double new_similarity = graph_->EdgeWeight(*neighbor, candidate);
|
||
|
if (new_similarity > old_similarity) {
|
||
|
difference += new_similarity - old_similarity;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Number of views penalty.
|
||
|
difference -= options_.size_penalty_weight;
|
||
|
|
||
|
// Orthogonality.
|
||
|
for (int i = 0; i < centers.size(); ++i) {
|
||
|
difference -= options_.similarity_penalty_weight *
|
||
|
graph_->EdgeWeight(centers[i], candidate);
|
||
|
}
|
||
|
|
||
|
return difference;
|
||
|
}
|
||
|
|
||
|
// Reassign views if they're more similar to the new canonical view.
|
||
|
void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
|
||
|
const int canonical_view) {
|
||
|
const IntSet& neighbors = graph_->Neighbors(canonical_view);
|
||
|
for (IntSet::const_iterator neighbor = neighbors.begin();
|
||
|
neighbor != neighbors.end();
|
||
|
++neighbor) {
|
||
|
const double old_similarity =
|
||
|
FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
|
||
|
const double new_similarity =
|
||
|
graph_->EdgeWeight(*neighbor, canonical_view);
|
||
|
if (new_similarity > old_similarity) {
|
||
|
view_to_canonical_view_[*neighbor] = canonical_view;
|
||
|
view_to_canonical_view_similarity_[*neighbor] = new_similarity;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Assign a cluster id to each view.
|
||
|
void CanonicalViewsClustering::ComputeClusterMembership(
|
||
|
const vector<int>& centers,
|
||
|
IntMap* membership) const {
|
||
|
CHECK_NOTNULL(membership)->clear();
|
||
|
|
||
|
// The i^th cluster has cluster id i.
|
||
|
IntMap center_to_cluster_id;
|
||
|
for (int i = 0; i < centers.size(); ++i) {
|
||
|
center_to_cluster_id[centers[i]] = i;
|
||
|
}
|
||
|
|
||
|
static const int kInvalidClusterId = -1;
|
||
|
|
||
|
const IntSet& views = graph_->vertices();
|
||
|
for (IntSet::const_iterator view = views.begin();
|
||
|
view != views.end();
|
||
|
++view) {
|
||
|
IntMap::const_iterator it =
|
||
|
view_to_canonical_view_.find(*view);
|
||
|
int cluster_id = kInvalidClusterId;
|
||
|
if (it != view_to_canonical_view_.end()) {
|
||
|
cluster_id = FindOrDie(center_to_cluster_id, it->second);
|
||
|
}
|
||
|
|
||
|
InsertOrDie(membership, *view, cluster_id);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_NO_SUITESPARSE
|