167 lines
6.0 KiB
C++
167 lines
6.0 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: kushalav@google.com (Avanish Kushal)
|
||
|
|
||
|
// This include must come before any #ifndef check on Ceres compile options.
|
||
|
#include "ceres/internal/port.h"
|
||
|
|
||
|
#ifndef CERES_NO_SUITESPARSE
|
||
|
|
||
|
#include "ceres/visibility.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <ctime>
|
||
|
#include <algorithm>
|
||
|
#include <set>
|
||
|
#include <vector>
|
||
|
#include <utility>
|
||
|
#include "ceres/block_structure.h"
|
||
|
#include "ceres/collections_port.h"
|
||
|
#include "ceres/graph.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::make_pair;
|
||
|
using std::max;
|
||
|
using std::pair;
|
||
|
using std::set;
|
||
|
using std::vector;
|
||
|
|
||
|
void ComputeVisibility(const CompressedRowBlockStructure& block_structure,
|
||
|
const int num_eliminate_blocks,
|
||
|
vector< set<int> >* visibility) {
|
||
|
CHECK_NOTNULL(visibility);
|
||
|
|
||
|
// Clear the visibility vector and resize it to hold a
|
||
|
// vector for each camera.
|
||
|
visibility->resize(0);
|
||
|
visibility->resize(block_structure.cols.size() - num_eliminate_blocks);
|
||
|
|
||
|
for (int i = 0; i < block_structure.rows.size(); ++i) {
|
||
|
const vector<Cell>& cells = block_structure.rows[i].cells;
|
||
|
int block_id = cells[0].block_id;
|
||
|
// If the first block is not an e_block, then skip this row block.
|
||
|
if (block_id >= num_eliminate_blocks) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
for (int j = 1; j < cells.size(); ++j) {
|
||
|
int camera_block_id = cells[j].block_id - num_eliminate_blocks;
|
||
|
DCHECK_GE(camera_block_id, 0);
|
||
|
DCHECK_LT(camera_block_id, visibility->size());
|
||
|
(*visibility)[camera_block_id].insert(block_id);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
WeightedGraph<int>* CreateSchurComplementGraph(
|
||
|
const vector<set<int> >& visibility) {
|
||
|
const time_t start_time = time(NULL);
|
||
|
// Compute the number of e_blocks/point blocks. Since the visibility
|
||
|
// set for each e_block/camera contains the set of e_blocks/points
|
||
|
// visible to it, we find the maximum across all visibility sets.
|
||
|
int num_points = 0;
|
||
|
for (int i = 0; i < visibility.size(); i++) {
|
||
|
if (visibility[i].size() > 0) {
|
||
|
num_points = max(num_points, (*visibility[i].rbegin()) + 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Invert the visibility. The input is a camera->point mapping,
|
||
|
// which tells us which points are visible in which
|
||
|
// cameras. However, to compute the sparsity structure of the Schur
|
||
|
// Complement efficiently, its better to have the point->camera
|
||
|
// mapping.
|
||
|
vector<set<int> > inverse_visibility(num_points);
|
||
|
for (int i = 0; i < visibility.size(); i++) {
|
||
|
const set<int>& visibility_set = visibility[i];
|
||
|
for (set<int>::const_iterator it = visibility_set.begin();
|
||
|
it != visibility_set.end();
|
||
|
++it) {
|
||
|
inverse_visibility[*it].insert(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Map from camera pairs to number of points visible to both cameras
|
||
|
// in the pair.
|
||
|
HashMap<pair<int, int>, int > camera_pairs;
|
||
|
|
||
|
// Count the number of points visible to each camera/f_block pair.
|
||
|
for (vector<set<int> >::const_iterator it = inverse_visibility.begin();
|
||
|
it != inverse_visibility.end();
|
||
|
++it) {
|
||
|
const set<int>& inverse_visibility_set = *it;
|
||
|
for (set<int>::const_iterator camera1 = inverse_visibility_set.begin();
|
||
|
camera1 != inverse_visibility_set.end();
|
||
|
++camera1) {
|
||
|
set<int>::const_iterator camera2 = camera1;
|
||
|
for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) {
|
||
|
++(camera_pairs[make_pair(*camera1, *camera2)]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
WeightedGraph<int>* graph = new WeightedGraph<int>;
|
||
|
|
||
|
// Add vertices and initialize the pairs for self edges so that self
|
||
|
// edges are guaranteed. This is needed for the Canonical views
|
||
|
// algorithm to work correctly.
|
||
|
static const double kSelfEdgeWeight = 1.0;
|
||
|
for (int i = 0; i < visibility.size(); ++i) {
|
||
|
graph->AddVertex(i);
|
||
|
graph->AddEdge(i, i, kSelfEdgeWeight);
|
||
|
}
|
||
|
|
||
|
// Add an edge for each camera pair.
|
||
|
for (HashMap<pair<int, int>, int>::const_iterator it = camera_pairs.begin();
|
||
|
it != camera_pairs.end();
|
||
|
++it) {
|
||
|
const int camera1 = it->first.first;
|
||
|
const int camera2 = it->first.second;
|
||
|
CHECK_NE(camera1, camera2);
|
||
|
|
||
|
const int count = it->second;
|
||
|
// Static cast necessary for Windows.
|
||
|
const double weight = static_cast<double>(count) /
|
||
|
(sqrt(static_cast<double>(
|
||
|
visibility[camera1].size() * visibility[camera2].size())));
|
||
|
graph->AddEdge(camera1, camera2, weight);
|
||
|
}
|
||
|
|
||
|
VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time);
|
||
|
return graph;
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_NO_SUITESPARSE
|