281 lines
11 KiB
C
281 lines
11 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_HYPERPLANE_H
|
||
|
#define EIGEN_HYPERPLANE_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
/** \geometry_module \ingroup Geometry_Module
|
||
|
*
|
||
|
* \class Hyperplane
|
||
|
*
|
||
|
* \brief A hyperplane
|
||
|
*
|
||
|
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
|
||
|
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
|
||
|
*
|
||
|
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||
|
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||
|
* Notice that the dimension of the hyperplane is _AmbientDim-1.
|
||
|
*
|
||
|
* This class represents an hyperplane as the zero set of the implicit equation
|
||
|
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
|
||
|
* and \f$ d \f$ is the distance (offset) to the origin.
|
||
|
*/
|
||
|
template <typename _Scalar, int _AmbientDim, int _Options>
|
||
|
class Hyperplane
|
||
|
{
|
||
|
public:
|
||
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
|
||
|
enum {
|
||
|
AmbientDimAtCompileTime = _AmbientDim,
|
||
|
Options = _Options
|
||
|
};
|
||
|
typedef _Scalar Scalar;
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
typedef DenseIndex Index;
|
||
|
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||
|
typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
|
||
|
? Dynamic
|
||
|
: Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
|
||
|
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
|
||
|
typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
|
||
|
|
||
|
/** Default constructor without initialization */
|
||
|
inline Hyperplane() {}
|
||
|
|
||
|
template<int OtherOptions>
|
||
|
Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
|
||
|
: m_coeffs(other.coeffs())
|
||
|
{}
|
||
|
|
||
|
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
|
||
|
* of the ambient space */
|
||
|
inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
|
||
|
|
||
|
/** Construct a plane from its normal \a n and a point \a e onto the plane.
|
||
|
* \warning the vector normal is assumed to be normalized.
|
||
|
*/
|
||
|
inline Hyperplane(const VectorType& n, const VectorType& e)
|
||
|
: m_coeffs(n.size()+1)
|
||
|
{
|
||
|
normal() = n;
|
||
|
offset() = -n.dot(e);
|
||
|
}
|
||
|
|
||
|
/** Constructs a plane from its normal \a n and distance to the origin \a d
|
||
|
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
|
||
|
* \warning the vector normal is assumed to be normalized.
|
||
|
*/
|
||
|
inline Hyperplane(const VectorType& n, const Scalar& d)
|
||
|
: m_coeffs(n.size()+1)
|
||
|
{
|
||
|
normal() = n;
|
||
|
offset() = d;
|
||
|
}
|
||
|
|
||
|
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
|
||
|
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
|
||
|
*/
|
||
|
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
|
||
|
{
|
||
|
Hyperplane result(p0.size());
|
||
|
result.normal() = (p1 - p0).unitOrthogonal();
|
||
|
result.offset() = -p0.dot(result.normal());
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
|
||
|
* is required to be exactly 3.
|
||
|
*/
|
||
|
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
|
||
|
{
|
||
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
|
||
|
Hyperplane result(p0.size());
|
||
|
VectorType v0(p2 - p0), v1(p1 - p0);
|
||
|
result.normal() = v0.cross(v1);
|
||
|
RealScalar norm = result.normal().norm();
|
||
|
if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
|
||
|
{
|
||
|
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||
|
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||
|
result.normal() = svd.matrixV().col(2);
|
||
|
}
|
||
|
else
|
||
|
result.normal() /= norm;
|
||
|
result.offset() = -p0.dot(result.normal());
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
|
||
|
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
|
||
|
* so an arbitrary choice is made.
|
||
|
*/
|
||
|
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
|
||
|
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
|
||
|
{
|
||
|
normal() = parametrized.direction().unitOrthogonal();
|
||
|
offset() = -parametrized.origin().dot(normal());
|
||
|
}
|
||
|
|
||
|
~Hyperplane() {}
|
||
|
|
||
|
/** \returns the dimension in which the plane holds */
|
||
|
inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
|
||
|
|
||
|
/** normalizes \c *this */
|
||
|
void normalize(void)
|
||
|
{
|
||
|
m_coeffs /= normal().norm();
|
||
|
}
|
||
|
|
||
|
/** \returns the signed distance between the plane \c *this and a point \a p.
|
||
|
* \sa absDistance()
|
||
|
*/
|
||
|
inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
|
||
|
|
||
|
/** \returns the absolute distance between the plane \c *this and a point \a p.
|
||
|
* \sa signedDistance()
|
||
|
*/
|
||
|
inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
|
||
|
|
||
|
/** \returns the projection of a point \a p onto the plane \c *this.
|
||
|
*/
|
||
|
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
|
||
|
|
||
|
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
|
||
|
* to the linear part of the implicit equation.
|
||
|
*/
|
||
|
inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
|
||
|
|
||
|
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
|
||
|
* to the linear part of the implicit equation.
|
||
|
*/
|
||
|
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||
|
|
||
|
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
|
||
|
* \warning the vector normal is assumed to be normalized.
|
||
|
*/
|
||
|
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
|
||
|
|
||
|
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
|
||
|
* of the implicit equation */
|
||
|
inline Scalar& offset() { return m_coeffs(dim()); }
|
||
|
|
||
|
/** \returns a constant reference to the coefficients c_i of the plane equation:
|
||
|
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||
|
*/
|
||
|
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||
|
|
||
|
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
|
||
|
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||
|
*/
|
||
|
inline Coefficients& coeffs() { return m_coeffs; }
|
||
|
|
||
|
/** \returns the intersection of *this with \a other.
|
||
|
*
|
||
|
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
|
||
|
*
|
||
|
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
|
||
|
*/
|
||
|
VectorType intersection(const Hyperplane& other) const
|
||
|
{
|
||
|
using std::abs;
|
||
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
|
||
|
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
|
||
|
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
|
||
|
// whether the two lines are approximately parallel.
|
||
|
if(internal::isMuchSmallerThan(det, Scalar(1)))
|
||
|
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
|
||
|
if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
|
||
|
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
|
||
|
else
|
||
|
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
|
||
|
}
|
||
|
else
|
||
|
{ // general case
|
||
|
Scalar invdet = Scalar(1) / det;
|
||
|
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
|
||
|
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
|
||
|
*
|
||
|
* \param mat the Dim x Dim transformation matrix
|
||
|
* \param traits specifies whether the matrix \a mat represents an #Isometry
|
||
|
* or a more generic #Affine transformation. The default is #Affine.
|
||
|
*/
|
||
|
template<typename XprType>
|
||
|
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
|
||
|
{
|
||
|
if (traits==Affine)
|
||
|
normal() = mat.inverse().transpose() * normal();
|
||
|
else if (traits==Isometry)
|
||
|
normal() = mat * normal();
|
||
|
else
|
||
|
{
|
||
|
eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
|
||
|
*
|
||
|
* \param t the transformation of dimension Dim
|
||
|
* \param traits specifies whether the transformation \a t represents an #Isometry
|
||
|
* or a more generic #Affine transformation. The default is #Affine.
|
||
|
* Other kind of transformations are not supported.
|
||
|
*/
|
||
|
template<int TrOptions>
|
||
|
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
|
||
|
TransformTraits traits = Affine)
|
||
|
{
|
||
|
transform(t.linear(), traits);
|
||
|
offset() -= normal().dot(t.translation());
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||
|
*
|
||
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||
|
* then this function smartly returns a const reference to \c *this.
|
||
|
*/
|
||
|
template<typename NewScalarType>
|
||
|
inline typename internal::cast_return_type<Hyperplane,
|
||
|
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
|
||
|
{
|
||
|
return typename internal::cast_return_type<Hyperplane,
|
||
|
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
|
||
|
}
|
||
|
|
||
|
/** Copy constructor with scalar type conversion */
|
||
|
template<typename OtherScalarType,int OtherOptions>
|
||
|
inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
|
||
|
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||
|
|
||
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||
|
* determined by \a prec.
|
||
|
*
|
||
|
* \sa MatrixBase::isApprox() */
|
||
|
template<int OtherOptions>
|
||
|
bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
|
||
|
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||
|
|
||
|
protected:
|
||
|
|
||
|
Coefficients m_coeffs;
|
||
|
};
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_HYPERPLANE_H
|