433 lines
18 KiB
C++
433 lines
18 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// Generic loop for line search based optimization algorithms.
|
||
|
//
|
||
|
// This is primarily inpsired by the minFunc packaged written by Mark
|
||
|
// Schmidt.
|
||
|
//
|
||
|
// http://www.di.ens.fr/~mschmidt/Software/minFunc.html
|
||
|
//
|
||
|
// For details on the theory and implementation see "Numerical
|
||
|
// Optimization" by Nocedal & Wright.
|
||
|
|
||
|
#include "ceres/line_search_minimizer.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cstdlib>
|
||
|
#include <cmath>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "Eigen/Dense"
|
||
|
#include "ceres/array_utils.h"
|
||
|
#include "ceres/evaluator.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/port.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/line_search.h"
|
||
|
#include "ceres/line_search_direction.h"
|
||
|
#include "ceres/stringprintf.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "ceres/wall_time.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
namespace {
|
||
|
|
||
|
// TODO(sameeragarwal): I think there is a small bug here, in that if
|
||
|
// the evaluation fails, then the state can contain garbage. Look at
|
||
|
// this more carefully.
|
||
|
bool Evaluate(Evaluator* evaluator,
|
||
|
const Vector& x,
|
||
|
LineSearchMinimizer::State* state,
|
||
|
std::string* message) {
|
||
|
if (!evaluator->Evaluate(x.data(),
|
||
|
&(state->cost),
|
||
|
NULL,
|
||
|
state->gradient.data(),
|
||
|
NULL)) {
|
||
|
*message = "Gradient evaluation failed.";
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
Vector negative_gradient = -state->gradient;
|
||
|
Vector projected_gradient_step(x.size());
|
||
|
if (!evaluator->Plus(x.data(),
|
||
|
negative_gradient.data(),
|
||
|
projected_gradient_step.data())) {
|
||
|
*message = "projected_gradient_step = Plus(x, -gradient) failed.";
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm();
|
||
|
state->gradient_max_norm =
|
||
|
(x - projected_gradient_step).lpNorm<Eigen::Infinity>();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void LineSearchMinimizer::Minimize(const Minimizer::Options& options,
|
||
|
double* parameters,
|
||
|
Solver::Summary* summary) {
|
||
|
const bool is_not_silent = !options.is_silent;
|
||
|
double start_time = WallTimeInSeconds();
|
||
|
double iteration_start_time = start_time;
|
||
|
|
||
|
Evaluator* evaluator = CHECK_NOTNULL(options.evaluator.get());
|
||
|
const int num_parameters = evaluator->NumParameters();
|
||
|
const int num_effective_parameters = evaluator->NumEffectiveParameters();
|
||
|
|
||
|
summary->termination_type = NO_CONVERGENCE;
|
||
|
summary->num_successful_steps = 0;
|
||
|
summary->num_unsuccessful_steps = 0;
|
||
|
|
||
|
VectorRef x(parameters, num_parameters);
|
||
|
|
||
|
State current_state(num_parameters, num_effective_parameters);
|
||
|
State previous_state(num_parameters, num_effective_parameters);
|
||
|
|
||
|
Vector delta(num_effective_parameters);
|
||
|
Vector x_plus_delta(num_parameters);
|
||
|
|
||
|
IterationSummary iteration_summary;
|
||
|
iteration_summary.iteration = 0;
|
||
|
iteration_summary.step_is_valid = false;
|
||
|
iteration_summary.step_is_successful = false;
|
||
|
iteration_summary.cost_change = 0.0;
|
||
|
iteration_summary.gradient_max_norm = 0.0;
|
||
|
iteration_summary.gradient_norm = 0.0;
|
||
|
iteration_summary.step_norm = 0.0;
|
||
|
iteration_summary.linear_solver_iterations = 0;
|
||
|
iteration_summary.step_solver_time_in_seconds = 0;
|
||
|
|
||
|
// Do initial cost and Jacobian evaluation.
|
||
|
if (!Evaluate(evaluator, x, ¤t_state, &summary->message)) {
|
||
|
summary->termination_type = FAILURE;
|
||
|
summary->message = "Initial cost and jacobian evaluation failed. "
|
||
|
"More details: " + summary->message;
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
summary->initial_cost = current_state.cost + summary->fixed_cost;
|
||
|
iteration_summary.cost = current_state.cost + summary->fixed_cost;
|
||
|
|
||
|
iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
|
||
|
iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
|
||
|
|
||
|
if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
|
||
|
summary->message = StringPrintf("Gradient tolerance reached. "
|
||
|
"Gradient max norm: %e <= %e",
|
||
|
iteration_summary.gradient_max_norm,
|
||
|
options.gradient_tolerance);
|
||
|
summary->termination_type = CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
iteration_summary.iteration_time_in_seconds =
|
||
|
WallTimeInSeconds() - iteration_start_time;
|
||
|
iteration_summary.cumulative_time_in_seconds =
|
||
|
WallTimeInSeconds() - start_time
|
||
|
+ summary->preprocessor_time_in_seconds;
|
||
|
summary->iterations.push_back(iteration_summary);
|
||
|
|
||
|
LineSearchDirection::Options line_search_direction_options;
|
||
|
line_search_direction_options.num_parameters = num_effective_parameters;
|
||
|
line_search_direction_options.type = options.line_search_direction_type;
|
||
|
line_search_direction_options.nonlinear_conjugate_gradient_type =
|
||
|
options.nonlinear_conjugate_gradient_type;
|
||
|
line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank;
|
||
|
line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling =
|
||
|
options.use_approximate_eigenvalue_bfgs_scaling;
|
||
|
scoped_ptr<LineSearchDirection> line_search_direction(
|
||
|
LineSearchDirection::Create(line_search_direction_options));
|
||
|
|
||
|
LineSearchFunction line_search_function(evaluator);
|
||
|
|
||
|
LineSearch::Options line_search_options;
|
||
|
line_search_options.interpolation_type =
|
||
|
options.line_search_interpolation_type;
|
||
|
line_search_options.min_step_size = options.min_line_search_step_size;
|
||
|
line_search_options.sufficient_decrease =
|
||
|
options.line_search_sufficient_function_decrease;
|
||
|
line_search_options.max_step_contraction =
|
||
|
options.max_line_search_step_contraction;
|
||
|
line_search_options.min_step_contraction =
|
||
|
options.min_line_search_step_contraction;
|
||
|
line_search_options.max_num_iterations =
|
||
|
options.max_num_line_search_step_size_iterations;
|
||
|
line_search_options.sufficient_curvature_decrease =
|
||
|
options.line_search_sufficient_curvature_decrease;
|
||
|
line_search_options.max_step_expansion =
|
||
|
options.max_line_search_step_expansion;
|
||
|
line_search_options.function = &line_search_function;
|
||
|
|
||
|
scoped_ptr<LineSearch>
|
||
|
line_search(LineSearch::Create(options.line_search_type,
|
||
|
line_search_options,
|
||
|
&summary->message));
|
||
|
if (line_search.get() == NULL) {
|
||
|
summary->termination_type = FAILURE;
|
||
|
LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LineSearch::Summary line_search_summary;
|
||
|
int num_line_search_direction_restarts = 0;
|
||
|
|
||
|
while (true) {
|
||
|
if (!RunCallbacks(options, iteration_summary, summary)) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
iteration_start_time = WallTimeInSeconds();
|
||
|
if (iteration_summary.iteration >= options.max_num_iterations) {
|
||
|
summary->message = "Maximum number of iterations reached.";
|
||
|
summary->termination_type = NO_CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
const double total_solver_time = iteration_start_time - start_time +
|
||
|
summary->preprocessor_time_in_seconds;
|
||
|
if (total_solver_time >= options.max_solver_time_in_seconds) {
|
||
|
summary->message = "Maximum solver time reached.";
|
||
|
summary->termination_type = NO_CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
iteration_summary = IterationSummary();
|
||
|
iteration_summary.iteration = summary->iterations.back().iteration + 1;
|
||
|
iteration_summary.step_is_valid = false;
|
||
|
iteration_summary.step_is_successful = false;
|
||
|
|
||
|
bool line_search_status = true;
|
||
|
if (iteration_summary.iteration == 1) {
|
||
|
current_state.search_direction = -current_state.gradient;
|
||
|
} else {
|
||
|
line_search_status = line_search_direction->NextDirection(
|
||
|
previous_state,
|
||
|
current_state,
|
||
|
¤t_state.search_direction);
|
||
|
}
|
||
|
|
||
|
if (!line_search_status &&
|
||
|
num_line_search_direction_restarts >=
|
||
|
options.max_num_line_search_direction_restarts) {
|
||
|
// Line search direction failed to generate a new direction, and we
|
||
|
// have already reached our specified maximum number of restarts,
|
||
|
// terminate optimization.
|
||
|
summary->message =
|
||
|
StringPrintf("Line search direction failure: specified "
|
||
|
"max_num_line_search_direction_restarts: %d reached.",
|
||
|
options.max_num_line_search_direction_restarts);
|
||
|
summary->termination_type = FAILURE;
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
} else if (!line_search_status) {
|
||
|
// Restart line search direction with gradient descent on first iteration
|
||
|
// as we have not yet reached our maximum number of restarts.
|
||
|
CHECK_LT(num_line_search_direction_restarts,
|
||
|
options.max_num_line_search_direction_restarts);
|
||
|
|
||
|
++num_line_search_direction_restarts;
|
||
|
LOG_IF(WARNING, is_not_silent)
|
||
|
<< "Line search direction algorithm: "
|
||
|
<< LineSearchDirectionTypeToString(
|
||
|
options.line_search_direction_type)
|
||
|
<< ", failed to produce a valid new direction at "
|
||
|
<< "iteration: " << iteration_summary.iteration
|
||
|
<< ". Restarting, number of restarts: "
|
||
|
<< num_line_search_direction_restarts << " / "
|
||
|
<< options.max_num_line_search_direction_restarts
|
||
|
<< " [max].";
|
||
|
line_search_direction.reset(
|
||
|
LineSearchDirection::Create(line_search_direction_options));
|
||
|
current_state.search_direction = -current_state.gradient;
|
||
|
}
|
||
|
|
||
|
line_search_function.Init(x, current_state.search_direction);
|
||
|
current_state.directional_derivative =
|
||
|
current_state.gradient.dot(current_state.search_direction);
|
||
|
|
||
|
// TODO(sameeragarwal): Refactor this into its own object and add
|
||
|
// explanations for the various choices.
|
||
|
//
|
||
|
// Note that we use !line_search_status to ensure that we treat cases when
|
||
|
// we restarted the line search direction equivalently to the first
|
||
|
// iteration.
|
||
|
const double initial_step_size =
|
||
|
(iteration_summary.iteration == 1 || !line_search_status)
|
||
|
? std::min(1.0, 1.0 / current_state.gradient_max_norm)
|
||
|
: std::min(1.0, 2.0 * (current_state.cost - previous_state.cost) /
|
||
|
current_state.directional_derivative);
|
||
|
// By definition, we should only ever go forwards along the specified search
|
||
|
// direction in a line search, most likely cause for this being violated
|
||
|
// would be a numerical failure in the line search direction calculation.
|
||
|
if (initial_step_size < 0.0) {
|
||
|
summary->message =
|
||
|
StringPrintf("Numerical failure in line search, initial_step_size is "
|
||
|
"negative: %.5e, directional_derivative: %.5e, "
|
||
|
"(current_cost - previous_cost): %.5e",
|
||
|
initial_step_size, current_state.directional_derivative,
|
||
|
(current_state.cost - previous_state.cost));
|
||
|
summary->termination_type = FAILURE;
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
line_search->Search(initial_step_size,
|
||
|
current_state.cost,
|
||
|
current_state.directional_derivative,
|
||
|
&line_search_summary);
|
||
|
if (!line_search_summary.success) {
|
||
|
summary->message =
|
||
|
StringPrintf("Numerical failure in line search, failed to find "
|
||
|
"a valid step size, (did not run out of iterations) "
|
||
|
"using initial_step_size: %.5e, initial_cost: %.5e, "
|
||
|
"initial_gradient: %.5e.",
|
||
|
initial_step_size, current_state.cost,
|
||
|
current_state.directional_derivative);
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
summary->termination_type = FAILURE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
current_state.step_size = line_search_summary.optimal_step_size;
|
||
|
delta = current_state.step_size * current_state.search_direction;
|
||
|
|
||
|
previous_state = current_state;
|
||
|
iteration_summary.step_solver_time_in_seconds =
|
||
|
WallTimeInSeconds() - iteration_start_time;
|
||
|
|
||
|
const double x_norm = x.norm();
|
||
|
|
||
|
if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) {
|
||
|
summary->termination_type = FAILURE;
|
||
|
summary->message =
|
||
|
"x_plus_delta = Plus(x, delta) failed. This should not happen "
|
||
|
"as the step was valid when it was selected by the line search.";
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
} else if (!Evaluate(evaluator,
|
||
|
x_plus_delta,
|
||
|
¤t_state,
|
||
|
&summary->message)) {
|
||
|
summary->termination_type = FAILURE;
|
||
|
summary->message =
|
||
|
"Step failed to evaluate. This should not happen as the step was "
|
||
|
"valid when it was selected by the line search. More details: " +
|
||
|
summary->message;
|
||
|
LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
} else {
|
||
|
x = x_plus_delta;
|
||
|
}
|
||
|
|
||
|
iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
|
||
|
iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
|
||
|
iteration_summary.cost_change = previous_state.cost - current_state.cost;
|
||
|
iteration_summary.cost = current_state.cost + summary->fixed_cost;
|
||
|
iteration_summary.step_norm = delta.norm();
|
||
|
iteration_summary.step_is_valid = true;
|
||
|
iteration_summary.step_is_successful = true;
|
||
|
iteration_summary.step_size = current_state.step_size;
|
||
|
iteration_summary.line_search_function_evaluations =
|
||
|
line_search_summary.num_function_evaluations;
|
||
|
iteration_summary.line_search_gradient_evaluations =
|
||
|
line_search_summary.num_gradient_evaluations;
|
||
|
iteration_summary.line_search_iterations =
|
||
|
line_search_summary.num_iterations;
|
||
|
iteration_summary.iteration_time_in_seconds =
|
||
|
WallTimeInSeconds() - iteration_start_time;
|
||
|
iteration_summary.cumulative_time_in_seconds =
|
||
|
WallTimeInSeconds() - start_time
|
||
|
+ summary->preprocessor_time_in_seconds;
|
||
|
|
||
|
summary->line_search_cost_evaluation_time_in_seconds +=
|
||
|
line_search_summary.cost_evaluation_time_in_seconds;
|
||
|
summary->line_search_gradient_evaluation_time_in_seconds +=
|
||
|
line_search_summary.gradient_evaluation_time_in_seconds;
|
||
|
summary->line_search_polynomial_minimization_time_in_seconds +=
|
||
|
line_search_summary.polynomial_minimization_time_in_seconds;
|
||
|
summary->line_search_total_time_in_seconds +=
|
||
|
line_search_summary.total_time_in_seconds;
|
||
|
++summary->num_successful_steps;
|
||
|
|
||
|
const double step_size_tolerance = options.parameter_tolerance *
|
||
|
(x_norm + options.parameter_tolerance);
|
||
|
if (iteration_summary.step_norm <= step_size_tolerance) {
|
||
|
summary->message =
|
||
|
StringPrintf("Parameter tolerance reached. "
|
||
|
"Relative step_norm: %e <= %e.",
|
||
|
(iteration_summary.step_norm /
|
||
|
(x_norm + options.parameter_tolerance)),
|
||
|
options.parameter_tolerance);
|
||
|
summary->termination_type = CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
|
||
|
summary->message = StringPrintf("Gradient tolerance reached. "
|
||
|
"Gradient max norm: %e <= %e",
|
||
|
iteration_summary.gradient_max_norm,
|
||
|
options.gradient_tolerance);
|
||
|
summary->termination_type = CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
const double absolute_function_tolerance =
|
||
|
options.function_tolerance * previous_state.cost;
|
||
|
if (fabs(iteration_summary.cost_change) <= absolute_function_tolerance) {
|
||
|
summary->message =
|
||
|
StringPrintf("Function tolerance reached. "
|
||
|
"|cost_change|/cost: %e <= %e",
|
||
|
fabs(iteration_summary.cost_change) /
|
||
|
previous_state.cost,
|
||
|
options.function_tolerance);
|
||
|
summary->termination_type = CONVERGENCE;
|
||
|
VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
summary->iterations.push_back(iteration_summary);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|