363 lines
14 KiB
C
363 lines
14 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// Abstract interface for objects solving linear systems of various
|
||
|
// kinds.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
|
||
|
#define CERES_INTERNAL_LINEAR_SOLVER_H_
|
||
|
|
||
|
#include <cstddef>
|
||
|
#include <map>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include "ceres/block_sparse_matrix.h"
|
||
|
#include "ceres/casts.h"
|
||
|
#include "ceres/compressed_row_sparse_matrix.h"
|
||
|
#include "ceres/dense_sparse_matrix.h"
|
||
|
#include "ceres/execution_summary.h"
|
||
|
#include "ceres/triplet_sparse_matrix.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
enum LinearSolverTerminationType {
|
||
|
// Termination criterion was met.
|
||
|
LINEAR_SOLVER_SUCCESS,
|
||
|
|
||
|
// Solver ran for max_num_iterations and terminated before the
|
||
|
// termination tolerance could be satisfied.
|
||
|
LINEAR_SOLVER_NO_CONVERGENCE,
|
||
|
|
||
|
// Solver was terminated due to numerical problems, generally due to
|
||
|
// the linear system being poorly conditioned.
|
||
|
LINEAR_SOLVER_FAILURE,
|
||
|
|
||
|
// Solver failed with a fatal error that cannot be recovered from,
|
||
|
// e.g. CHOLMOD ran out of memory when computing the symbolic or
|
||
|
// numeric factorization or an underlying library was called with
|
||
|
// the wrong arguments.
|
||
|
LINEAR_SOLVER_FATAL_ERROR
|
||
|
};
|
||
|
|
||
|
|
||
|
class LinearOperator;
|
||
|
|
||
|
// Abstract base class for objects that implement algorithms for
|
||
|
// solving linear systems
|
||
|
//
|
||
|
// Ax = b
|
||
|
//
|
||
|
// It is expected that a single instance of a LinearSolver object
|
||
|
// maybe used multiple times for solving multiple linear systems with
|
||
|
// the same sparsity structure. This allows them to cache and reuse
|
||
|
// information across solves. This means that calling Solve on the
|
||
|
// same LinearSolver instance with two different linear systems will
|
||
|
// result in undefined behaviour.
|
||
|
//
|
||
|
// Subclasses of LinearSolver use two structs to configure themselves.
|
||
|
// The Options struct configures the LinearSolver object for its
|
||
|
// lifetime. The PerSolveOptions struct is used to specify options for
|
||
|
// a particular Solve call.
|
||
|
class LinearSolver {
|
||
|
public:
|
||
|
struct Options {
|
||
|
Options()
|
||
|
: type(SPARSE_NORMAL_CHOLESKY),
|
||
|
preconditioner_type(JACOBI),
|
||
|
visibility_clustering_type(CANONICAL_VIEWS),
|
||
|
dense_linear_algebra_library_type(EIGEN),
|
||
|
sparse_linear_algebra_library_type(SUITE_SPARSE),
|
||
|
use_postordering(false),
|
||
|
dynamic_sparsity(false),
|
||
|
use_explicit_schur_complement(false),
|
||
|
min_num_iterations(1),
|
||
|
max_num_iterations(1),
|
||
|
num_threads(1),
|
||
|
residual_reset_period(10),
|
||
|
row_block_size(Eigen::Dynamic),
|
||
|
e_block_size(Eigen::Dynamic),
|
||
|
f_block_size(Eigen::Dynamic) {
|
||
|
}
|
||
|
|
||
|
LinearSolverType type;
|
||
|
PreconditionerType preconditioner_type;
|
||
|
VisibilityClusteringType visibility_clustering_type;
|
||
|
DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
|
||
|
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
|
||
|
|
||
|
// See solver.h for information about these flags.
|
||
|
bool use_postordering;
|
||
|
bool dynamic_sparsity;
|
||
|
bool use_explicit_schur_complement;
|
||
|
|
||
|
// Number of internal iterations that the solver uses. This
|
||
|
// parameter only makes sense for iterative solvers like CG.
|
||
|
int min_num_iterations;
|
||
|
int max_num_iterations;
|
||
|
|
||
|
// If possible, how many threads can the solver use.
|
||
|
int num_threads;
|
||
|
|
||
|
// Hints about the order in which the parameter blocks should be
|
||
|
// eliminated by the linear solver.
|
||
|
//
|
||
|
// For example if elimination_groups is a vector of size k, then
|
||
|
// the linear solver is informed that it should eliminate the
|
||
|
// parameter blocks 0 ... elimination_groups[0] - 1 first, and
|
||
|
// then elimination_groups[0] ... elimination_groups[1] - 1 and so
|
||
|
// on. Within each elimination group, the linear solver is free to
|
||
|
// choose how the parameter blocks are ordered. Different linear
|
||
|
// solvers have differing requirements on elimination_groups.
|
||
|
//
|
||
|
// The most common use is for Schur type solvers, where there
|
||
|
// should be at least two elimination groups and the first
|
||
|
// elimination group must form an independent set in the normal
|
||
|
// equations. The first elimination group corresponds to the
|
||
|
// num_eliminate_blocks in the Schur type solvers.
|
||
|
std::vector<int> elimination_groups;
|
||
|
|
||
|
// Iterative solvers, e.g. Preconditioned Conjugate Gradients
|
||
|
// maintain a cheap estimate of the residual which may become
|
||
|
// inaccurate over time. Thus for non-zero values of this
|
||
|
// parameter, the solver can be told to recalculate the value of
|
||
|
// the residual using a |b - Ax| evaluation.
|
||
|
int residual_reset_period;
|
||
|
|
||
|
// If the block sizes in a BlockSparseMatrix are fixed, then in
|
||
|
// some cases the Schur complement based solvers can detect and
|
||
|
// specialize on them.
|
||
|
//
|
||
|
// It is expected that these parameters are set programmatically
|
||
|
// rather than manually.
|
||
|
//
|
||
|
// Please see schur_complement_solver.h and schur_eliminator.h for
|
||
|
// more details.
|
||
|
int row_block_size;
|
||
|
int e_block_size;
|
||
|
int f_block_size;
|
||
|
};
|
||
|
|
||
|
// Options for the Solve method.
|
||
|
struct PerSolveOptions {
|
||
|
PerSolveOptions()
|
||
|
: D(NULL),
|
||
|
preconditioner(NULL),
|
||
|
r_tolerance(0.0),
|
||
|
q_tolerance(0.0) {
|
||
|
}
|
||
|
|
||
|
// This option only makes sense for unsymmetric linear solvers
|
||
|
// that can solve rectangular linear systems.
|
||
|
//
|
||
|
// Given a matrix A, an optional diagonal matrix D as a vector,
|
||
|
// and a vector b, the linear solver will solve for
|
||
|
//
|
||
|
// | A | x = | b |
|
||
|
// | D | | 0 |
|
||
|
//
|
||
|
// If D is null, then it is treated as zero, and the solver returns
|
||
|
// the solution to
|
||
|
//
|
||
|
// A x = b
|
||
|
//
|
||
|
// In either case, x is the vector that solves the following
|
||
|
// optimization problem.
|
||
|
//
|
||
|
// arg min_x ||Ax - b||^2 + ||Dx||^2
|
||
|
//
|
||
|
// Here A is a matrix of size m x n, with full column rank. If A
|
||
|
// does not have full column rank, the results returned by the
|
||
|
// solver cannot be relied on. D, if it is not null is an array of
|
||
|
// size n. b is an array of size m and x is an array of size n.
|
||
|
double * D;
|
||
|
|
||
|
// This option only makes sense for iterative solvers.
|
||
|
//
|
||
|
// In general the performance of an iterative linear solver
|
||
|
// depends on the condition number of the matrix A. For example
|
||
|
// the convergence rate of the conjugate gradients algorithm
|
||
|
// is proportional to the square root of the condition number.
|
||
|
//
|
||
|
// One particularly useful technique for improving the
|
||
|
// conditioning of a linear system is to precondition it. In its
|
||
|
// simplest form a preconditioner is a matrix M such that instead
|
||
|
// of solving Ax = b, we solve the linear system AM^{-1} y = b
|
||
|
// instead, where M is such that the condition number k(AM^{-1})
|
||
|
// is smaller than the conditioner k(A). Given the solution to
|
||
|
// this system, x = M^{-1} y. The iterative solver takes care of
|
||
|
// the mechanics of solving the preconditioned system and
|
||
|
// returning the corrected solution x. The user only needs to
|
||
|
// supply a linear operator.
|
||
|
//
|
||
|
// A null preconditioner is equivalent to an identity matrix being
|
||
|
// used a preconditioner.
|
||
|
LinearOperator* preconditioner;
|
||
|
|
||
|
|
||
|
// The following tolerance related options only makes sense for
|
||
|
// iterative solvers. Direct solvers ignore them.
|
||
|
|
||
|
// Solver terminates when
|
||
|
//
|
||
|
// |Ax - b| <= r_tolerance * |b|.
|
||
|
//
|
||
|
// This is the most commonly used termination criterion for
|
||
|
// iterative solvers.
|
||
|
double r_tolerance;
|
||
|
|
||
|
// For PSD matrices A, let
|
||
|
//
|
||
|
// Q(x) = x'Ax - 2b'x
|
||
|
//
|
||
|
// be the cost of the quadratic function defined by A and b. Then,
|
||
|
// the solver terminates at iteration i if
|
||
|
//
|
||
|
// i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
|
||
|
//
|
||
|
// This termination criterion is more useful when using CG to
|
||
|
// solve the Newton step. This particular convergence test comes
|
||
|
// from Stephen Nash's work on truncated Newton
|
||
|
// methods. References:
|
||
|
//
|
||
|
// 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
|
||
|
// Direction Within A Truncated Newton Method, Operation
|
||
|
// Research Letters 9(1990) 219-221.
|
||
|
//
|
||
|
// 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
|
||
|
// Journal of Computational and Applied Mathematics,
|
||
|
// 124(1-2), 45-59, 2000.
|
||
|
//
|
||
|
double q_tolerance;
|
||
|
};
|
||
|
|
||
|
// Summary of a call to the Solve method. We should move away from
|
||
|
// the true/false method for determining solver success. We should
|
||
|
// let the summary object do the talking.
|
||
|
struct Summary {
|
||
|
Summary()
|
||
|
: residual_norm(0.0),
|
||
|
num_iterations(-1),
|
||
|
termination_type(LINEAR_SOLVER_FAILURE) {
|
||
|
}
|
||
|
|
||
|
double residual_norm;
|
||
|
int num_iterations;
|
||
|
LinearSolverTerminationType termination_type;
|
||
|
std::string message;
|
||
|
};
|
||
|
|
||
|
// If the optimization problem is such that there are no remaining
|
||
|
// e-blocks, a Schur type linear solver cannot be used. If the
|
||
|
// linear solver is of Schur type, this function implements a policy
|
||
|
// to select an alternate nearest linear solver to the one selected
|
||
|
// by the user. The input linear_solver_type is returned otherwise.
|
||
|
static LinearSolverType LinearSolverForZeroEBlocks(
|
||
|
LinearSolverType linear_solver_type);
|
||
|
|
||
|
virtual ~LinearSolver();
|
||
|
|
||
|
// Solve Ax = b.
|
||
|
virtual Summary Solve(LinearOperator* A,
|
||
|
const double* b,
|
||
|
const PerSolveOptions& per_solve_options,
|
||
|
double* x) = 0;
|
||
|
|
||
|
// The following two methods return copies instead of references so
|
||
|
// that the base class implementation does not have to worry about
|
||
|
// life time issues. Further, these calls are not expected to be
|
||
|
// frequent or performance sensitive.
|
||
|
virtual std::map<std::string, int> CallStatistics() const {
|
||
|
return std::map<std::string, int>();
|
||
|
}
|
||
|
|
||
|
virtual std::map<std::string, double> TimeStatistics() const {
|
||
|
return std::map<std::string, double>();
|
||
|
}
|
||
|
|
||
|
// Factory
|
||
|
static LinearSolver* Create(const Options& options);
|
||
|
};
|
||
|
|
||
|
// This templated subclass of LinearSolver serves as a base class for
|
||
|
// other linear solvers that depend on the particular matrix layout of
|
||
|
// the underlying linear operator. For example some linear solvers
|
||
|
// need low level access to the TripletSparseMatrix implementing the
|
||
|
// LinearOperator interface. This class hides those implementation
|
||
|
// details behind a private virtual method, and has the Solve method
|
||
|
// perform the necessary upcasting.
|
||
|
template <typename MatrixType>
|
||
|
class TypedLinearSolver : public LinearSolver {
|
||
|
public:
|
||
|
virtual ~TypedLinearSolver() {}
|
||
|
virtual LinearSolver::Summary Solve(
|
||
|
LinearOperator* A,
|
||
|
const double* b,
|
||
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
||
|
double* x) {
|
||
|
ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
|
||
|
CHECK_NOTNULL(A);
|
||
|
CHECK_NOTNULL(b);
|
||
|
CHECK_NOTNULL(x);
|
||
|
return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
|
||
|
}
|
||
|
|
||
|
virtual std::map<std::string, int> CallStatistics() const {
|
||
|
return execution_summary_.calls();
|
||
|
}
|
||
|
|
||
|
virtual std::map<std::string, double> TimeStatistics() const {
|
||
|
return execution_summary_.times();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
virtual LinearSolver::Summary SolveImpl(
|
||
|
MatrixType* A,
|
||
|
const double* b,
|
||
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
||
|
double* x) = 0;
|
||
|
|
||
|
ExecutionSummary execution_summary_;
|
||
|
};
|
||
|
|
||
|
// Linear solvers that depend on acccess to the low level structure of
|
||
|
// a SparseMatrix.
|
||
|
typedef TypedLinearSolver<BlockSparseMatrix> BlockSparseMatrixSolver; // NOLINT
|
||
|
typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver; // NOLINT
|
||
|
typedef TypedLinearSolver<DenseSparseMatrix> DenseSparseMatrixSolver; // NOLINT
|
||
|
typedef TypedLinearSolver<TripletSparseMatrix> TripletSparseMatrixSolver; // NOLINT
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_LINEAR_SOLVER_H_
|