669 lines
22 KiB
C++
669 lines
22 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: keir@google.com (Keir Mierle)
|
||
|
//
|
||
|
// Tests shared across evaluators. The tests try all combinations of linear
|
||
|
// solver and num_eliminate_blocks (for schur-based solvers).
|
||
|
|
||
|
#include "ceres/evaluator.h"
|
||
|
|
||
|
#include "ceres/casts.h"
|
||
|
#include "ceres/cost_function.h"
|
||
|
#include "ceres/crs_matrix.h"
|
||
|
#include "ceres/evaluator_test_utils.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/local_parameterization.h"
|
||
|
#include "ceres/problem_impl.h"
|
||
|
#include "ceres/program.h"
|
||
|
#include "ceres/sized_cost_function.h"
|
||
|
#include "ceres/sparse_matrix.h"
|
||
|
#include "ceres/stringprintf.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::string;
|
||
|
using std::vector;
|
||
|
|
||
|
// TODO(keir): Consider pushing this into a common test utils file.
|
||
|
template<int kFactor, int kNumResiduals,
|
||
|
int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true>
|
||
|
class ParameterIgnoringCostFunction
|
||
|
: public SizedCostFunction<kNumResiduals, N0, N1, N2> {
|
||
|
typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base;
|
||
|
public:
|
||
|
virtual bool Evaluate(double const* const* parameters,
|
||
|
double* residuals,
|
||
|
double** jacobians) const {
|
||
|
for (int i = 0; i < Base::num_residuals(); ++i) {
|
||
|
residuals[i] = i + 1;
|
||
|
}
|
||
|
if (jacobians) {
|
||
|
for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) {
|
||
|
// The jacobians here are full sized, but they are transformed in the
|
||
|
// evaluator into the "local" jacobian. In the tests, the "subset
|
||
|
// constant" parameterization is used, which should pick out columns
|
||
|
// from these jacobians. Put values in the jacobian that make this
|
||
|
// obvious; in particular, make the jacobians like this:
|
||
|
//
|
||
|
// 1 2 3 4 ...
|
||
|
// 1 2 3 4 ... .* kFactor
|
||
|
// 1 2 3 4 ...
|
||
|
//
|
||
|
// where the multiplication by kFactor makes it easier to distinguish
|
||
|
// between Jacobians of different residuals for the same parameter.
|
||
|
if (jacobians[k] != NULL) {
|
||
|
MatrixRef jacobian(jacobians[k],
|
||
|
Base::num_residuals(),
|
||
|
Base::parameter_block_sizes()[k]);
|
||
|
for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) {
|
||
|
jacobian.col(j).setConstant(kFactor * (j + 1));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return kSucceeds;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct EvaluatorTestOptions {
|
||
|
EvaluatorTestOptions(LinearSolverType linear_solver_type,
|
||
|
int num_eliminate_blocks,
|
||
|
bool dynamic_sparsity = false)
|
||
|
: linear_solver_type(linear_solver_type),
|
||
|
num_eliminate_blocks(num_eliminate_blocks),
|
||
|
dynamic_sparsity(dynamic_sparsity) {}
|
||
|
|
||
|
LinearSolverType linear_solver_type;
|
||
|
int num_eliminate_blocks;
|
||
|
bool dynamic_sparsity;
|
||
|
};
|
||
|
|
||
|
struct EvaluatorTest
|
||
|
: public ::testing::TestWithParam<EvaluatorTestOptions> {
|
||
|
Evaluator* CreateEvaluator(Program* program) {
|
||
|
// This program is straight from the ProblemImpl, and so has no index/offset
|
||
|
// yet; compute it here as required by the evalutor implementations.
|
||
|
program->SetParameterOffsetsAndIndex();
|
||
|
|
||
|
if (VLOG_IS_ON(1)) {
|
||
|
string report;
|
||
|
StringAppendF(&report, "Creating evaluator with type: %d",
|
||
|
GetParam().linear_solver_type);
|
||
|
if (GetParam().linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
|
||
|
StringAppendF(&report, ", dynamic_sparsity: %d",
|
||
|
GetParam().dynamic_sparsity);
|
||
|
}
|
||
|
StringAppendF(&report, " and num_eliminate_blocks: %d",
|
||
|
GetParam().num_eliminate_blocks);
|
||
|
VLOG(1) << report;
|
||
|
}
|
||
|
Evaluator::Options options;
|
||
|
options.linear_solver_type = GetParam().linear_solver_type;
|
||
|
options.num_eliminate_blocks = GetParam().num_eliminate_blocks;
|
||
|
options.dynamic_sparsity = GetParam().dynamic_sparsity;
|
||
|
string error;
|
||
|
return Evaluator::Create(options, program, &error);
|
||
|
}
|
||
|
|
||
|
void EvaluateAndCompare(ProblemImpl *problem,
|
||
|
int expected_num_rows,
|
||
|
int expected_num_cols,
|
||
|
double expected_cost,
|
||
|
const double* expected_residuals,
|
||
|
const double* expected_gradient,
|
||
|
const double* expected_jacobian) {
|
||
|
scoped_ptr<Evaluator> evaluator(
|
||
|
CreateEvaluator(problem->mutable_program()));
|
||
|
int num_residuals = expected_num_rows;
|
||
|
int num_parameters = expected_num_cols;
|
||
|
|
||
|
double cost = -1;
|
||
|
|
||
|
Vector residuals(num_residuals);
|
||
|
residuals.setConstant(-2000);
|
||
|
|
||
|
Vector gradient(num_parameters);
|
||
|
gradient.setConstant(-3000);
|
||
|
|
||
|
scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
|
||
|
|
||
|
ASSERT_EQ(expected_num_rows, evaluator->NumResiduals());
|
||
|
ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters());
|
||
|
ASSERT_EQ(expected_num_rows, jacobian->num_rows());
|
||
|
ASSERT_EQ(expected_num_cols, jacobian->num_cols());
|
||
|
|
||
|
vector<double> state(evaluator->NumParameters());
|
||
|
|
||
|
ASSERT_TRUE(evaluator->Evaluate(
|
||
|
&state[0],
|
||
|
&cost,
|
||
|
expected_residuals != NULL ? &residuals[0] : NULL,
|
||
|
expected_gradient != NULL ? &gradient[0] : NULL,
|
||
|
expected_jacobian != NULL ? jacobian.get() : NULL));
|
||
|
|
||
|
Matrix actual_jacobian;
|
||
|
if (expected_jacobian != NULL) {
|
||
|
jacobian->ToDenseMatrix(&actual_jacobian);
|
||
|
}
|
||
|
|
||
|
CompareEvaluations(expected_num_rows,
|
||
|
expected_num_cols,
|
||
|
expected_cost,
|
||
|
expected_residuals,
|
||
|
expected_gradient,
|
||
|
expected_jacobian,
|
||
|
cost,
|
||
|
&residuals[0],
|
||
|
&gradient[0],
|
||
|
actual_jacobian.data());
|
||
|
}
|
||
|
|
||
|
// Try all combinations of parameters for the evaluator.
|
||
|
void CheckAllEvaluationCombinations(const ExpectedEvaluation &expected) {
|
||
|
for (int i = 0; i < 8; ++i) {
|
||
|
EvaluateAndCompare(&problem,
|
||
|
expected.num_rows,
|
||
|
expected.num_cols,
|
||
|
expected.cost,
|
||
|
(i & 1) ? expected.residuals : NULL,
|
||
|
(i & 2) ? expected.gradient : NULL,
|
||
|
(i & 4) ? expected.jacobian : NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The values are ignored completely by the cost function.
|
||
|
double x[2];
|
||
|
double y[3];
|
||
|
double z[4];
|
||
|
|
||
|
ProblemImpl problem;
|
||
|
};
|
||
|
|
||
|
void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) {
|
||
|
VectorRef(sparse_matrix->mutable_values(),
|
||
|
sparse_matrix->num_nonzeros()).setConstant(value);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, SingleResidualProblem) {
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,
|
||
|
NULL,
|
||
|
x, y, z);
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
3, 9,
|
||
|
// Cost
|
||
|
7.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, 3.0 },
|
||
|
// Gradient
|
||
|
{ 6.0, 12.0, // x
|
||
|
6.0, 12.0, 18.0, // y
|
||
|
6.0, 12.0, 18.0, 24.0, // z
|
||
|
},
|
||
|
// Jacobian
|
||
|
// x y z
|
||
|
{ 1, 2, 1, 2, 3, 1, 2, 3, 4,
|
||
|
1, 2, 1, 2, 3, 1, 2, 3, 4,
|
||
|
1, 2, 1, 2, 3, 1, 2, 3, 4
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) {
|
||
|
// Add the parameters in explicit order to force the ordering in the program.
|
||
|
problem.AddParameterBlock(x, 2);
|
||
|
problem.AddParameterBlock(y, 3);
|
||
|
problem.AddParameterBlock(z, 4);
|
||
|
|
||
|
// Then use a cost function which is similar to the others, but swap around
|
||
|
// the ordering of the parameters to the cost function. This shouldn't affect
|
||
|
// the jacobian evaluation, but requires explicit handling in the evaluators.
|
||
|
// At one point the compressed row evaluator had a bug that went undetected
|
||
|
// for a long time, since by chance most users added parameters to the problem
|
||
|
// in the same order that they occured as parameters to a cost function.
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>,
|
||
|
NULL,
|
||
|
z, y, x);
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
3, 9,
|
||
|
// Cost
|
||
|
7.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, 3.0 },
|
||
|
// Gradient
|
||
|
{ 6.0, 12.0, // x
|
||
|
6.0, 12.0, 18.0, // y
|
||
|
6.0, 12.0, 18.0, 24.0, // z
|
||
|
},
|
||
|
// Jacobian
|
||
|
// x y z
|
||
|
{ 1, 2, 1, 2, 3, 1, 2, 3, 4,
|
||
|
1, 2, 1, 2, 3, 1, 2, 3, 4,
|
||
|
1, 2, 1, 2, 3, 1, 2, 3, 4
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) {
|
||
|
// These parameters are not used.
|
||
|
double a[2];
|
||
|
double b[1];
|
||
|
double c[1];
|
||
|
double d[3];
|
||
|
|
||
|
// Add the parameters in a mixed order so the Jacobian is "checkered" with the
|
||
|
// values from the other parameters.
|
||
|
problem.AddParameterBlock(a, 2);
|
||
|
problem.AddParameterBlock(x, 2);
|
||
|
problem.AddParameterBlock(b, 1);
|
||
|
problem.AddParameterBlock(y, 3);
|
||
|
problem.AddParameterBlock(c, 1);
|
||
|
problem.AddParameterBlock(z, 4);
|
||
|
problem.AddParameterBlock(d, 3);
|
||
|
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,
|
||
|
NULL,
|
||
|
x, y, z);
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
3, 16,
|
||
|
// Cost
|
||
|
7.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, 3.0 },
|
||
|
// Gradient
|
||
|
{ 0.0, 0.0, // a
|
||
|
6.0, 12.0, // x
|
||
|
0.0, // b
|
||
|
6.0, 12.0, 18.0, // y
|
||
|
0.0, // c
|
||
|
6.0, 12.0, 18.0, 24.0, // z
|
||
|
0.0, 0.0, 0.0, // d
|
||
|
},
|
||
|
// Jacobian
|
||
|
// a x b y c z d
|
||
|
{ 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0,
|
||
|
0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0,
|
||
|
0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, MultipleResidualProblem) {
|
||
|
// Add the parameters in explicit order to force the ordering in the program.
|
||
|
problem.AddParameterBlock(x, 2);
|
||
|
problem.AddParameterBlock(y, 3);
|
||
|
problem.AddParameterBlock(z, 4);
|
||
|
|
||
|
// f(x, y) in R^2
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
|
||
|
NULL,
|
||
|
x, y);
|
||
|
|
||
|
// g(x, z) in R^3
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
|
||
|
NULL,
|
||
|
x, z);
|
||
|
|
||
|
// h(y, z) in R^4
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
|
||
|
NULL,
|
||
|
y, z);
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
9, 9,
|
||
|
// Cost
|
||
|
// f g h
|
||
|
( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, // f
|
||
|
1.0, 2.0, 3.0, // g
|
||
|
1.0, 2.0, 3.0, 4.0 // h
|
||
|
},
|
||
|
// Gradient
|
||
|
{ 15.0, 30.0, // x
|
||
|
33.0, 66.0, 99.0, // y
|
||
|
42.0, 84.0, 126.0, 168.0 // z
|
||
|
},
|
||
|
// Jacobian
|
||
|
// x y z
|
||
|
{ /* f(x, y) */ 1, 2, 1, 2, 3, 0, 0, 0, 0,
|
||
|
1, 2, 1, 2, 3, 0, 0, 0, 0,
|
||
|
|
||
|
/* g(x, z) */ 2, 4, 0, 0, 0, 2, 4, 6, 8,
|
||
|
2, 4, 0, 0, 0, 2, 4, 6, 8,
|
||
|
2, 4, 0, 0, 0, 2, 4, 6, 8,
|
||
|
|
||
|
/* h(y, z) */ 0, 0, 3, 6, 9, 3, 6, 9, 12,
|
||
|
0, 0, 3, 6, 9, 3, 6, 9, 12,
|
||
|
0, 0, 3, 6, 9, 3, 6, 9, 12,
|
||
|
0, 0, 3, 6, 9, 3, 6, 9, 12
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) {
|
||
|
// Add the parameters in explicit order to force the ordering in the program.
|
||
|
problem.AddParameterBlock(x, 2);
|
||
|
|
||
|
// Fix y's first dimension.
|
||
|
vector<int> y_fixed;
|
||
|
y_fixed.push_back(0);
|
||
|
problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed));
|
||
|
|
||
|
// Fix z's second dimension.
|
||
|
vector<int> z_fixed;
|
||
|
z_fixed.push_back(1);
|
||
|
problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed));
|
||
|
|
||
|
// f(x, y) in R^2
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
|
||
|
NULL,
|
||
|
x, y);
|
||
|
|
||
|
// g(x, z) in R^3
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
|
||
|
NULL,
|
||
|
x, z);
|
||
|
|
||
|
// h(y, z) in R^4
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
|
||
|
NULL,
|
||
|
y, z);
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
9, 7,
|
||
|
// Cost
|
||
|
// f g h
|
||
|
( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, // f
|
||
|
1.0, 2.0, 3.0, // g
|
||
|
1.0, 2.0, 3.0, 4.0 // h
|
||
|
},
|
||
|
// Gradient
|
||
|
{ 15.0, 30.0, // x
|
||
|
66.0, 99.0, // y
|
||
|
42.0, 126.0, 168.0 // z
|
||
|
},
|
||
|
// Jacobian
|
||
|
// x y z
|
||
|
{ /* f(x, y) */ 1, 2, 2, 3, 0, 0, 0,
|
||
|
1, 2, 2, 3, 0, 0, 0,
|
||
|
|
||
|
/* g(x, z) */ 2, 4, 0, 0, 2, 6, 8,
|
||
|
2, 4, 0, 0, 2, 6, 8,
|
||
|
2, 4, 0, 0, 2, 6, 8,
|
||
|
|
||
|
/* h(y, z) */ 0, 0, 6, 9, 3, 9, 12,
|
||
|
0, 0, 6, 9, 3, 9, 12,
|
||
|
0, 0, 6, 9, 3, 9, 12,
|
||
|
0, 0, 6, 9, 3, 9, 12
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) {
|
||
|
// The values are ignored completely by the cost function.
|
||
|
double x[2];
|
||
|
double y[3];
|
||
|
double z[4];
|
||
|
|
||
|
// Add the parameters in explicit order to force the ordering in the program.
|
||
|
problem.AddParameterBlock(x, 2);
|
||
|
problem.AddParameterBlock(y, 3);
|
||
|
problem.AddParameterBlock(z, 4);
|
||
|
|
||
|
// f(x, y) in R^2
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
|
||
|
NULL,
|
||
|
x, y);
|
||
|
|
||
|
// g(x, z) in R^3
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
|
||
|
NULL,
|
||
|
x, z);
|
||
|
|
||
|
// h(y, z) in R^4
|
||
|
problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
|
||
|
NULL,
|
||
|
y, z);
|
||
|
|
||
|
// For this test, "z" is constant.
|
||
|
problem.SetParameterBlockConstant(z);
|
||
|
|
||
|
// Create the reduced program which is missing the fixed "z" variable.
|
||
|
// Normally, the preprocessing of the program that happens in solver_impl
|
||
|
// takes care of this, but we don't want to invoke the solver here.
|
||
|
Program reduced_program;
|
||
|
vector<ParameterBlock*>* parameter_blocks =
|
||
|
problem.mutable_program()->mutable_parameter_blocks();
|
||
|
|
||
|
// "z" is the last parameter; save it for later and pop it off temporarily.
|
||
|
// Note that "z" will still get read during evaluation, so it cannot be
|
||
|
// deleted at this point.
|
||
|
ParameterBlock* parameter_block_z = parameter_blocks->back();
|
||
|
parameter_blocks->pop_back();
|
||
|
|
||
|
ExpectedEvaluation expected = {
|
||
|
// Rows/columns
|
||
|
9, 5,
|
||
|
// Cost
|
||
|
// f g h
|
||
|
( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
|
||
|
// Residuals
|
||
|
{ 1.0, 2.0, // f
|
||
|
1.0, 2.0, 3.0, // g
|
||
|
1.0, 2.0, 3.0, 4.0 // h
|
||
|
},
|
||
|
// Gradient
|
||
|
{ 15.0, 30.0, // x
|
||
|
33.0, 66.0, 99.0, // y
|
||
|
},
|
||
|
// Jacobian
|
||
|
// x y
|
||
|
{ /* f(x, y) */ 1, 2, 1, 2, 3,
|
||
|
1, 2, 1, 2, 3,
|
||
|
|
||
|
/* g(x, z) */ 2, 4, 0, 0, 0,
|
||
|
2, 4, 0, 0, 0,
|
||
|
2, 4, 0, 0, 0,
|
||
|
|
||
|
/* h(y, z) */ 0, 0, 3, 6, 9,
|
||
|
0, 0, 3, 6, 9,
|
||
|
0, 0, 3, 6, 9,
|
||
|
0, 0, 3, 6, 9
|
||
|
}
|
||
|
};
|
||
|
CheckAllEvaluationCombinations(expected);
|
||
|
|
||
|
// Restore parameter block z, so it will get freed in a consistent way.
|
||
|
parameter_blocks->push_back(parameter_block_z);
|
||
|
}
|
||
|
|
||
|
TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) {
|
||
|
// Switch the return value to failure.
|
||
|
problem.AddResidualBlock(
|
||
|
new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z);
|
||
|
|
||
|
// The values are ignored.
|
||
|
double state[9];
|
||
|
|
||
|
scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program()));
|
||
|
scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
|
||
|
double cost;
|
||
|
EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL));
|
||
|
}
|
||
|
|
||
|
// In the pairs, the first argument is the linear solver type, and the second
|
||
|
// argument is num_eliminate_blocks. Changing the num_eliminate_blocks only
|
||
|
// makes sense for the schur-based solvers.
|
||
|
//
|
||
|
// Try all values of num_eliminate_blocks that make sense given that in the
|
||
|
// tests a maximum of 4 parameter blocks are present.
|
||
|
INSTANTIATE_TEST_CASE_P(
|
||
|
LinearSolvers,
|
||
|
EvaluatorTest,
|
||
|
::testing::Values(
|
||
|
EvaluatorTestOptions(DENSE_QR, 0),
|
||
|
EvaluatorTestOptions(DENSE_SCHUR, 0),
|
||
|
EvaluatorTestOptions(DENSE_SCHUR, 1),
|
||
|
EvaluatorTestOptions(DENSE_SCHUR, 2),
|
||
|
EvaluatorTestOptions(DENSE_SCHUR, 3),
|
||
|
EvaluatorTestOptions(DENSE_SCHUR, 4),
|
||
|
EvaluatorTestOptions(SPARSE_SCHUR, 0),
|
||
|
EvaluatorTestOptions(SPARSE_SCHUR, 1),
|
||
|
EvaluatorTestOptions(SPARSE_SCHUR, 2),
|
||
|
EvaluatorTestOptions(SPARSE_SCHUR, 3),
|
||
|
EvaluatorTestOptions(SPARSE_SCHUR, 4),
|
||
|
EvaluatorTestOptions(ITERATIVE_SCHUR, 0),
|
||
|
EvaluatorTestOptions(ITERATIVE_SCHUR, 1),
|
||
|
EvaluatorTestOptions(ITERATIVE_SCHUR, 2),
|
||
|
EvaluatorTestOptions(ITERATIVE_SCHUR, 3),
|
||
|
EvaluatorTestOptions(ITERATIVE_SCHUR, 4),
|
||
|
EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, false),
|
||
|
EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, true)));
|
||
|
|
||
|
// Simple cost function used to check if the evaluator is sensitive to
|
||
|
// state changes.
|
||
|
class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> {
|
||
|
public:
|
||
|
virtual bool Evaluate(double const* const* parameters,
|
||
|
double* residuals,
|
||
|
double** jacobians) const {
|
||
|
double x1 = parameters[0][0];
|
||
|
double x2 = parameters[0][1];
|
||
|
residuals[0] = x1 * x1;
|
||
|
residuals[1] = x2 * x2;
|
||
|
|
||
|
if (jacobians != NULL) {
|
||
|
double* jacobian = jacobians[0];
|
||
|
if (jacobian != NULL) {
|
||
|
jacobian[0] = 2.0 * x1;
|
||
|
jacobian[1] = 0.0;
|
||
|
jacobian[2] = 0.0;
|
||
|
jacobian[3] = 2.0 * x2;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST(Evaluator, EvaluatorRespectsParameterChanges) {
|
||
|
ProblemImpl problem;
|
||
|
|
||
|
double x[2];
|
||
|
x[0] = 1.0;
|
||
|
x[1] = 1.0;
|
||
|
|
||
|
problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x);
|
||
|
Program* program = problem.mutable_program();
|
||
|
program->SetParameterOffsetsAndIndex();
|
||
|
|
||
|
Evaluator::Options options;
|
||
|
options.linear_solver_type = DENSE_QR;
|
||
|
options.num_eliminate_blocks = 0;
|
||
|
string error;
|
||
|
scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error));
|
||
|
scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
|
||
|
|
||
|
ASSERT_EQ(2, jacobian->num_rows());
|
||
|
ASSERT_EQ(2, jacobian->num_cols());
|
||
|
|
||
|
double state[2];
|
||
|
state[0] = 2.0;
|
||
|
state[1] = 3.0;
|
||
|
|
||
|
// The original state of a residual block comes from the user's
|
||
|
// state. So the original state is 1.0, 1.0, and the only way we get
|
||
|
// the 2.0, 3.0 results in the following tests is if it respects the
|
||
|
// values in the state vector.
|
||
|
|
||
|
// Cost only; no residuals and no jacobian.
|
||
|
{
|
||
|
double cost = -1;
|
||
|
ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL));
|
||
|
EXPECT_EQ(48.5, cost);
|
||
|
}
|
||
|
|
||
|
// Cost and residuals, no jacobian.
|
||
|
{
|
||
|
double cost = -1;
|
||
|
double residuals[2] = { -2, -2 };
|
||
|
ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL, NULL));
|
||
|
EXPECT_EQ(48.5, cost);
|
||
|
EXPECT_EQ(4, residuals[0]);
|
||
|
EXPECT_EQ(9, residuals[1]);
|
||
|
}
|
||
|
|
||
|
// Cost, residuals, and jacobian.
|
||
|
{
|
||
|
double cost = -1;
|
||
|
double residuals[2] = { -2, -2};
|
||
|
SetSparseMatrixConstant(jacobian.get(), -1);
|
||
|
ASSERT_TRUE(evaluator->Evaluate(state,
|
||
|
&cost,
|
||
|
residuals,
|
||
|
NULL,
|
||
|
jacobian.get()));
|
||
|
EXPECT_EQ(48.5, cost);
|
||
|
EXPECT_EQ(4, residuals[0]);
|
||
|
EXPECT_EQ(9, residuals[1]);
|
||
|
Matrix actual_jacobian;
|
||
|
jacobian->ToDenseMatrix(&actual_jacobian);
|
||
|
|
||
|
Matrix expected_jacobian(2, 2);
|
||
|
expected_jacobian
|
||
|
<< 2 * state[0], 0,
|
||
|
0, 2 * state[1];
|
||
|
|
||
|
EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all())
|
||
|
<< "Actual:\n" << actual_jacobian
|
||
|
<< "\nExpected:\n" << expected_jacobian;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|