365 lines
13 KiB
C
365 lines
13 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// Various algorithms that operate on undirected graphs.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_GRAPH_ALGORITHMS_H_
|
||
|
#define CERES_INTERNAL_GRAPH_ALGORITHMS_H_
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <vector>
|
||
|
#include <utility>
|
||
|
#include "ceres/collections_port.h"
|
||
|
#include "ceres/graph.h"
|
||
|
#include "ceres/wall_time.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
// Compare two vertices of a graph by their degrees, if the degrees
|
||
|
// are equal then order them by their ids.
|
||
|
template <typename Vertex>
|
||
|
class VertexTotalOrdering {
|
||
|
public:
|
||
|
explicit VertexTotalOrdering(const Graph<Vertex>& graph)
|
||
|
: graph_(graph) {}
|
||
|
|
||
|
bool operator()(const Vertex& lhs, const Vertex& rhs) const {
|
||
|
if (graph_.Neighbors(lhs).size() == graph_.Neighbors(rhs).size()) {
|
||
|
return lhs < rhs;
|
||
|
}
|
||
|
return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Graph<Vertex>& graph_;
|
||
|
};
|
||
|
|
||
|
template <typename Vertex>
|
||
|
class VertexDegreeLessThan {
|
||
|
public:
|
||
|
explicit VertexDegreeLessThan(const Graph<Vertex>& graph)
|
||
|
: graph_(graph) {}
|
||
|
|
||
|
bool operator()(const Vertex& lhs, const Vertex& rhs) const {
|
||
|
return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Graph<Vertex>& graph_;
|
||
|
};
|
||
|
|
||
|
// Order the vertices of a graph using its (approximately) largest
|
||
|
// independent set, where an independent set of a graph is a set of
|
||
|
// vertices that have no edges connecting them. The maximum
|
||
|
// independent set problem is NP-Hard, but there are effective
|
||
|
// approximation algorithms available. The implementation here uses a
|
||
|
// breadth first search that explores the vertices in order of
|
||
|
// increasing degree. The same idea is used by Saad & Li in "MIQR: A
|
||
|
// multilevel incomplete QR preconditioner for large sparse
|
||
|
// least-squares problems", SIMAX, 2007.
|
||
|
//
|
||
|
// Given a undirected graph G(V,E), the algorithm is a greedy BFS
|
||
|
// search where the vertices are explored in increasing order of their
|
||
|
// degree. The output vector ordering contains elements of S in
|
||
|
// increasing order of their degree, followed by elements of V - S in
|
||
|
// increasing order of degree. The return value of the function is the
|
||
|
// cardinality of S.
|
||
|
template <typename Vertex>
|
||
|
int IndependentSetOrdering(const Graph<Vertex>& graph,
|
||
|
std::vector<Vertex>* ordering) {
|
||
|
const HashSet<Vertex>& vertices = graph.vertices();
|
||
|
const int num_vertices = vertices.size();
|
||
|
|
||
|
CHECK_NOTNULL(ordering);
|
||
|
ordering->clear();
|
||
|
ordering->reserve(num_vertices);
|
||
|
|
||
|
// Colors for labeling the graph during the BFS.
|
||
|
const char kWhite = 0;
|
||
|
const char kGrey = 1;
|
||
|
const char kBlack = 2;
|
||
|
|
||
|
// Mark all vertices white.
|
||
|
HashMap<Vertex, char> vertex_color;
|
||
|
std::vector<Vertex> vertex_queue;
|
||
|
for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
|
||
|
it != vertices.end();
|
||
|
++it) {
|
||
|
vertex_color[*it] = kWhite;
|
||
|
vertex_queue.push_back(*it);
|
||
|
}
|
||
|
|
||
|
|
||
|
std::sort(vertex_queue.begin(), vertex_queue.end(),
|
||
|
VertexTotalOrdering<Vertex>(graph));
|
||
|
|
||
|
// Iterate over vertex_queue. Pick the first white vertex, add it
|
||
|
// to the independent set. Mark it black and its neighbors grey.
|
||
|
for (int i = 0; i < vertex_queue.size(); ++i) {
|
||
|
const Vertex& vertex = vertex_queue[i];
|
||
|
if (vertex_color[vertex] != kWhite) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ordering->push_back(vertex);
|
||
|
vertex_color[vertex] = kBlack;
|
||
|
const HashSet<Vertex>& neighbors = graph.Neighbors(vertex);
|
||
|
for (typename HashSet<Vertex>::const_iterator it = neighbors.begin();
|
||
|
it != neighbors.end();
|
||
|
++it) {
|
||
|
vertex_color[*it] = kGrey;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int independent_set_size = ordering->size();
|
||
|
|
||
|
// Iterate over the vertices and add all the grey vertices to the
|
||
|
// ordering. At this stage there should only be black or grey
|
||
|
// vertices in the graph.
|
||
|
for (typename std::vector<Vertex>::const_iterator it = vertex_queue.begin();
|
||
|
it != vertex_queue.end();
|
||
|
++it) {
|
||
|
const Vertex vertex = *it;
|
||
|
DCHECK(vertex_color[vertex] != kWhite);
|
||
|
if (vertex_color[vertex] != kBlack) {
|
||
|
ordering->push_back(vertex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CHECK_EQ(ordering->size(), num_vertices);
|
||
|
return independent_set_size;
|
||
|
}
|
||
|
|
||
|
// Same as above with one important difference. The ordering parameter
|
||
|
// is an input/output parameter which carries an initial ordering of
|
||
|
// the vertices of the graph. The greedy independent set algorithm
|
||
|
// starts by sorting the vertices in increasing order of their
|
||
|
// degree. The input ordering is used to stabilize this sort, i.e., if
|
||
|
// two vertices have the same degree then they are ordered in the same
|
||
|
// order in which they occur in "ordering".
|
||
|
//
|
||
|
// This is useful in eliminating non-determinism from the Schur
|
||
|
// ordering algorithm over all.
|
||
|
template <typename Vertex>
|
||
|
int StableIndependentSetOrdering(const Graph<Vertex>& graph,
|
||
|
std::vector<Vertex>* ordering) {
|
||
|
CHECK_NOTNULL(ordering);
|
||
|
const HashSet<Vertex>& vertices = graph.vertices();
|
||
|
const int num_vertices = vertices.size();
|
||
|
CHECK_EQ(vertices.size(), ordering->size());
|
||
|
|
||
|
// Colors for labeling the graph during the BFS.
|
||
|
const char kWhite = 0;
|
||
|
const char kGrey = 1;
|
||
|
const char kBlack = 2;
|
||
|
|
||
|
std::vector<Vertex> vertex_queue(*ordering);
|
||
|
|
||
|
std::stable_sort(vertex_queue.begin(), vertex_queue.end(),
|
||
|
VertexDegreeLessThan<Vertex>(graph));
|
||
|
|
||
|
// Mark all vertices white.
|
||
|
HashMap<Vertex, char> vertex_color;
|
||
|
for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
|
||
|
it != vertices.end();
|
||
|
++it) {
|
||
|
vertex_color[*it] = kWhite;
|
||
|
}
|
||
|
|
||
|
ordering->clear();
|
||
|
ordering->reserve(num_vertices);
|
||
|
// Iterate over vertex_queue. Pick the first white vertex, add it
|
||
|
// to the independent set. Mark it black and its neighbors grey.
|
||
|
for (int i = 0; i < vertex_queue.size(); ++i) {
|
||
|
const Vertex& vertex = vertex_queue[i];
|
||
|
if (vertex_color[vertex] != kWhite) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ordering->push_back(vertex);
|
||
|
vertex_color[vertex] = kBlack;
|
||
|
const HashSet<Vertex>& neighbors = graph.Neighbors(vertex);
|
||
|
for (typename HashSet<Vertex>::const_iterator it = neighbors.begin();
|
||
|
it != neighbors.end();
|
||
|
++it) {
|
||
|
vertex_color[*it] = kGrey;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int independent_set_size = ordering->size();
|
||
|
|
||
|
// Iterate over the vertices and add all the grey vertices to the
|
||
|
// ordering. At this stage there should only be black or grey
|
||
|
// vertices in the graph.
|
||
|
for (typename std::vector<Vertex>::const_iterator it = vertex_queue.begin();
|
||
|
it != vertex_queue.end();
|
||
|
++it) {
|
||
|
const Vertex vertex = *it;
|
||
|
DCHECK(vertex_color[vertex] != kWhite);
|
||
|
if (vertex_color[vertex] != kBlack) {
|
||
|
ordering->push_back(vertex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CHECK_EQ(ordering->size(), num_vertices);
|
||
|
return independent_set_size;
|
||
|
}
|
||
|
|
||
|
// Find the connected component for a vertex implemented using the
|
||
|
// find and update operation for disjoint-set. Recursively traverse
|
||
|
// the disjoint set structure till you reach a vertex whose connected
|
||
|
// component has the same id as the vertex itself. Along the way
|
||
|
// update the connected components of all the vertices. This updating
|
||
|
// is what gives this data structure its efficiency.
|
||
|
template <typename Vertex>
|
||
|
Vertex FindConnectedComponent(const Vertex& vertex,
|
||
|
HashMap<Vertex, Vertex>* union_find) {
|
||
|
typename HashMap<Vertex, Vertex>::iterator it = union_find->find(vertex);
|
||
|
DCHECK(it != union_find->end());
|
||
|
if (it->second != vertex) {
|
||
|
it->second = FindConnectedComponent(it->second, union_find);
|
||
|
}
|
||
|
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Compute a degree two constrained Maximum Spanning Tree/forest of
|
||
|
// the input graph. Caller owns the result.
|
||
|
//
|
||
|
// Finding degree 2 spanning tree of a graph is not always
|
||
|
// possible. For example a star graph, i.e. a graph with n-nodes
|
||
|
// where one node is connected to the other n-1 nodes does not have
|
||
|
// a any spanning trees of degree less than n-1.Even if such a tree
|
||
|
// exists, finding such a tree is NP-Hard.
|
||
|
|
||
|
// We get around both of these problems by using a greedy, degree
|
||
|
// constrained variant of Kruskal's algorithm. We start with a graph
|
||
|
// G_T with the same vertex set V as the input graph G(V,E) but an
|
||
|
// empty edge set. We then iterate over the edges of G in decreasing
|
||
|
// order of weight, adding them to G_T if doing so does not create a
|
||
|
// cycle in G_T} and the degree of all the vertices in G_T remains
|
||
|
// bounded by two. This O(|E|) algorithm results in a degree-2
|
||
|
// spanning forest, or a collection of linear paths that span the
|
||
|
// graph G.
|
||
|
template <typename Vertex>
|
||
|
WeightedGraph<Vertex>*
|
||
|
Degree2MaximumSpanningForest(const WeightedGraph<Vertex>& graph) {
|
||
|
// Array of edges sorted in decreasing order of their weights.
|
||
|
std::vector<std::pair<double, std::pair<Vertex, Vertex> > > weighted_edges;
|
||
|
WeightedGraph<Vertex>* forest = new WeightedGraph<Vertex>();
|
||
|
|
||
|
// Disjoint-set to keep track of the connected components in the
|
||
|
// maximum spanning tree.
|
||
|
HashMap<Vertex, Vertex> disjoint_set;
|
||
|
|
||
|
// Sort of the edges in the graph in decreasing order of their
|
||
|
// weight. Also add the vertices of the graph to the Maximum
|
||
|
// Spanning Tree graph and set each vertex to be its own connected
|
||
|
// component in the disjoint_set structure.
|
||
|
const HashSet<Vertex>& vertices = graph.vertices();
|
||
|
for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
|
||
|
it != vertices.end();
|
||
|
++it) {
|
||
|
const Vertex vertex1 = *it;
|
||
|
forest->AddVertex(vertex1, graph.VertexWeight(vertex1));
|
||
|
disjoint_set[vertex1] = vertex1;
|
||
|
|
||
|
const HashSet<Vertex>& neighbors = graph.Neighbors(vertex1);
|
||
|
for (typename HashSet<Vertex>::const_iterator it2 = neighbors.begin();
|
||
|
it2 != neighbors.end();
|
||
|
++it2) {
|
||
|
const Vertex vertex2 = *it2;
|
||
|
if (vertex1 >= vertex2) {
|
||
|
continue;
|
||
|
}
|
||
|
const double weight = graph.EdgeWeight(vertex1, vertex2);
|
||
|
weighted_edges.push_back(
|
||
|
std::make_pair(weight, std::make_pair(vertex1, vertex2)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The elements of this vector, are pairs<edge_weight,
|
||
|
// edge>. Sorting it using the reverse iterators gives us the edges
|
||
|
// in decreasing order of edges.
|
||
|
std::sort(weighted_edges.rbegin(), weighted_edges.rend());
|
||
|
|
||
|
// Greedily add edges to the spanning tree/forest as long as they do
|
||
|
// not violate the degree/cycle constraint.
|
||
|
for (int i =0; i < weighted_edges.size(); ++i) {
|
||
|
const std::pair<Vertex, Vertex>& edge = weighted_edges[i].second;
|
||
|
const Vertex vertex1 = edge.first;
|
||
|
const Vertex vertex2 = edge.second;
|
||
|
|
||
|
// Check if either of the vertices are of degree 2 already, in
|
||
|
// which case adding this edge will violate the degree 2
|
||
|
// constraint.
|
||
|
if ((forest->Neighbors(vertex1).size() == 2) ||
|
||
|
(forest->Neighbors(vertex2).size() == 2)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Find the id of the connected component to which the two
|
||
|
// vertices belong to. If the id is the same, it means that the
|
||
|
// two of them are already connected to each other via some other
|
||
|
// vertex, and adding this edge will create a cycle.
|
||
|
Vertex root1 = FindConnectedComponent(vertex1, &disjoint_set);
|
||
|
Vertex root2 = FindConnectedComponent(vertex2, &disjoint_set);
|
||
|
|
||
|
if (root1 == root2) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// This edge can be added, add an edge in either direction with
|
||
|
// the same weight as the original graph.
|
||
|
const double edge_weight = graph.EdgeWeight(vertex1, vertex2);
|
||
|
forest->AddEdge(vertex1, vertex2, edge_weight);
|
||
|
forest->AddEdge(vertex2, vertex1, edge_weight);
|
||
|
|
||
|
// Connected the two connected components by updating the
|
||
|
// disjoint_set structure. Always connect the connected component
|
||
|
// with the greater index with the connected component with the
|
||
|
// smaller index. This should ensure shallower trees, for quicker
|
||
|
// lookup.
|
||
|
if (root2 < root1) {
|
||
|
std::swap(root1, root2);
|
||
|
}
|
||
|
|
||
|
disjoint_set[root2] = root1;
|
||
|
}
|
||
|
return forest;
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_GRAPH_ALGORITHMS_H_
|