MYNT-EYE-S-SDK/include/Ctain/MatrixSolver.h

251 lines
6.8 KiB
C
Raw Normal View History

//
// Created by 顾涵彬 on 2019-08-30.
//
#ifndef MATRIX_MATRIXSOLVER_H
#define MATRIX_MATRIXSOLVER_H
#include <cmath>
#include <complex>
static bool Matrix_EigenValue(double *K1,int n,int LoopNumber,double Error1,double *Ret);
2019-09-04 12:03:22 +03:00
static void Matrix_Hessenberg(double *A1,int n,double *ret);
namespace Ctain {
class EigenSolver {
public:
EigenSolver(SMatrix<double> s) {
2019-09-04 12:03:22 +03:00
double *A = new double[s.rows()*2];
double *B = new double[s.size()];
for(int i = 0; i < s.size(); i++)
B[i] = s(i);
memset(A, 0, sizeof(s.rows()*2));
Matrix_EigenValue(B, s.rows(),1000,1e-10,A);
Matrix<double> tt(A, s.rows(), 2);
t=tt;
2019-09-04 12:03:22 +03:00
std::cout<<"s:"<<s;
SMatrix<double> s2(A, s.rows());
std::cout<<"tt:"<<tt;
std::cout<<"s2:"<<s2;
delete []A;
delete []B;
}
Matrix<double> eigenvalues() {
return t;
}
private:
Matrix<double> t;
};
} //namespace Ctain end
static void Matrix_Hessenberg(double *A1,int n,double *ret)
{
2019-09-04 12:03:22 +03:00
int MaxNumber;
double temp,*A;
A=new double[n*n];
2019-09-04 12:03:22 +03:00
memset(A, 0, sizeof(double)*n*n);
for (int i=0;i<n;i++) {
int k=i*n;
for (int j=0;j<n;j++)
{
A[k+j]=A1[k+j];
}
}
2019-09-04 12:03:22 +03:00
for (int k=1;k<n-1;k++) {
int i=k-1;
MaxNumber=k;
2019-09-04 12:03:22 +03:00
temp=fabs(A[k*n+i]);
for (int j=k+1;j<n;j++) {
if (fabs(A[j*n+i])>temp) {
temp=fabs(A[j*n+i]);
MaxNumber=j;
}
}
ret[0]=A[MaxNumber*n+i];
2019-09-04 12:03:22 +03:00
if (ret[0]!=0) {
2019-09-04 12:03:22 +03:00
if (MaxNumber!=k) {
for(int j=k-1;j<n;j++) {
temp=A[i*n+j];
A[i*n+j]=A[k*n+j];
A[k*n+j]=temp;
}
2019-09-04 12:03:22 +03:00
for(int j=0;j<n;j++) {
temp=A[j*n+i];
A[j*n+i]=A[j*n+k];
A[j*n+k]=temp;
}
}
2019-09-04 12:03:22 +03:00
for (int i=k+1;i<n;i++) {
temp=A[i*n+k-1]/ret[0];
A[i*n+k-1]=0;
2019-09-04 12:03:22 +03:00
for (int j=k;j<n;j++) {
A[i*n+j]-=temp*A[k*n+j];
}
2019-09-04 12:03:22 +03:00
for (int j=0;j<n;j++) {
A[j*n+k]+=temp*A[j*n+i];
}
}
}
}
2019-09-04 12:03:22 +03:00
for (int i=0;i<n;i++) {
int k=i*n;
for (int j=0;j<n;j++) {
ret[k+j]=A[k+j];
}
}
delete []A;
}
static bool Matrix_EigenValue(double *K1,int n,int LoopNumber,double Error1,double *Ret)
{
int i,j,k,t,m,Loop1;
double b,c,d,g,xy,p,q,r,x,s,e,f,z,y,temp,*A;
A=new double[n*n];
2019-09-04 12:03:22 +03:00
memset(A, 0, sizeof(double)*n*n);
Matrix_Hessenberg(K1,n,A);
m=n;
Loop1=LoopNumber;
while(m!=0) {
t=m-1;
while(t>0) {
2019-09-04 12:03:22 +03:00
temp=fabs(A[(t-1)*n+t-1]);
temp+=fabs(A[t*n+t]);
temp=temp*Error1;
2019-09-04 12:03:22 +03:00
if (fabs(A[t*n+t-1])>temp) {
t--;
}
else {
break;
}
}
if (t==m-1) {
Ret[(m-1)*2]=A[(m-1)*n+m-1];
Ret[(m-1)*2+1]=0;
m-=1;
Loop1=LoopNumber;
}
else if(t==m-2) {
b=-A[(m-1)*n+m-1]-A[(m-2)*n+m-2];
c=A[(m-1)*n+m-1]*A[(m-2)*n+m-2]-A[(m-1)*n+m-2]*A[(m-2)*n+m-1];
d=b*b-4*c;
2019-09-04 12:03:22 +03:00
y=sqrt(fabs(d));
if (d>0) {
xy=1;
if (b<0) {
xy=-1;
}
Ret[(m-1)*2]=-(b+xy*y)/2;
Ret[(m-1)*2+1]=0;
Ret[(m-2)*2]=c/Ret[(m-1)*2];
Ret[(m-2)*2+1]=0;
}
else {
Ret[(m-1)*2]=-b/2;
Ret[(m-2)*2]=-b/2;
Ret[(m-1)*2+1]=y/2;
Ret[(m-2)*2+1]=-y/2;
}
m-=2;
Loop1=LoopNumber;
}
else {
if (Loop1<1) {
return false;
}
Loop1--;
j=t+2;
while (j<m) {
A[j*n+j-2]=0;
j++;
}
j=t+3;
while (j<m) {
A[j*n+j-3]=0;
j++;
}
k=t;
while (k<m-1) {
if (k!=t) {
p=A[k*n+k-1];
q=A[(k+1)*n+k-1];
if (k!=m-2) {
r=A[(k+2)*n+k-1];
}
else {
r=0;
}
}
else {
b=A[(m-1)*n+m-1];
c=A[(m-2)*n+m-2];
x=b+c;
y=b*c-A[(m-2)*n+m-1]*A[(m-1)*n+m-2];
p=A[t*n+t]*(A[t*n+t]-x)+A[t*n+t+1]*A[(t+1)*n+t]+y;
q=A[(t+1)*n+t]*(A[t*n+t]+A[(t+1)*n+t+1]-x);
r=A[(t+1)*n+t]*A[(t+2)*n+t+1];
}
if (p!=0 || q!=0 || r!=0) {
if (p<0) {
xy=-1;
}
else {
xy=1;
}
s=xy*sqrt(p*p+q*q+r*r);
if (k!=t) {
A[k*n+k-1]=-s;
}
e=-q/s;
f=-r/s;
x=-p/s;
y=-x-f*r/(p+s);
g=e*r/(p+s);
z=-x-e*q/(p+s);
for (j=k;j<m;j++) {
b=A[k*n+j];
c=A[(k+1)*n+j];
p=x*b+e*c;
q=e*b+y*c;
r=f*b+g*c;
if (k!=m-2) {
b=A[(k+2)*n+j];
p+=f*b;
q+=g*b;
r+=z*b;
A[(k+2)*n+j]=r;
}
A[(k+1)*n+j]=q;
A[k*n+j]=p;
}
j=k+3;
if (j>m-2) {
j=m-1;
}
for (i=t;i<j+1;i++) {
b=A[i*n+k];
c=A[i*n+k+1];
p=x*b+e*c;
q=e*b+y*c;
r=f*b+g*c;
if (k!=m-2) {
b=A[i*n+k+2];
p+=f*b;
q+=g*b;
r+=z*b;
A[i*n+k+2]=r;
}
A[i*n+k+1]=q;
A[i*n+k]=p;
}
}
k++;
}
}
}
delete []A;
return true;
}
#endif //MATRIX_MATRIXSOLVER_H