249 lines
8.1 KiB
C++
249 lines
8.1 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// A preconditioned conjugate gradients solver
|
||
|
// (ConjugateGradientsSolver) for positive semidefinite linear
|
||
|
// systems.
|
||
|
//
|
||
|
// We have also augmented the termination criterion used by this
|
||
|
// solver to support not just residual based termination but also
|
||
|
// termination based on decrease in the value of the quadratic model
|
||
|
// that CG optimizes.
|
||
|
|
||
|
#include "ceres/conjugate_gradients_solver.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <cstddef>
|
||
|
#include "ceres/fpclassify.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/linear_operator.h"
|
||
|
#include "ceres/stringprintf.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
namespace {
|
||
|
|
||
|
bool IsZeroOrInfinity(double x) {
|
||
|
return ((x == 0.0) || (IsInfinite(x)));
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
ConjugateGradientsSolver::ConjugateGradientsSolver(
|
||
|
const LinearSolver::Options& options)
|
||
|
: options_(options) {
|
||
|
}
|
||
|
|
||
|
LinearSolver::Summary ConjugateGradientsSolver::Solve(
|
||
|
LinearOperator* A,
|
||
|
const double* b,
|
||
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
||
|
double* x) {
|
||
|
CHECK_NOTNULL(A);
|
||
|
CHECK_NOTNULL(x);
|
||
|
CHECK_NOTNULL(b);
|
||
|
CHECK_EQ(A->num_rows(), A->num_cols());
|
||
|
|
||
|
LinearSolver::Summary summary;
|
||
|
summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
|
||
|
summary.message = "Maximum number of iterations reached.";
|
||
|
summary.num_iterations = 0;
|
||
|
|
||
|
const int num_cols = A->num_cols();
|
||
|
VectorRef xref(x, num_cols);
|
||
|
ConstVectorRef bref(b, num_cols);
|
||
|
|
||
|
const double norm_b = bref.norm();
|
||
|
if (norm_b == 0.0) {
|
||
|
xref.setZero();
|
||
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
||
|
summary.message = "Convergence. |b| = 0.";
|
||
|
return summary;
|
||
|
}
|
||
|
|
||
|
Vector r(num_cols);
|
||
|
Vector p(num_cols);
|
||
|
Vector z(num_cols);
|
||
|
Vector tmp(num_cols);
|
||
|
|
||
|
const double tol_r = per_solve_options.r_tolerance * norm_b;
|
||
|
|
||
|
tmp.setZero();
|
||
|
A->RightMultiply(x, tmp.data());
|
||
|
r = bref - tmp;
|
||
|
double norm_r = r.norm();
|
||
|
if (options_.min_num_iterations == 0 && norm_r <= tol_r) {
|
||
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
||
|
summary.message =
|
||
|
StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
|
||
|
return summary;
|
||
|
}
|
||
|
|
||
|
double rho = 1.0;
|
||
|
|
||
|
// Initial value of the quadratic model Q = x'Ax - 2 * b'x.
|
||
|
double Q0 = -1.0 * xref.dot(bref + r);
|
||
|
|
||
|
for (summary.num_iterations = 1;; ++summary.num_iterations) {
|
||
|
// Apply preconditioner
|
||
|
if (per_solve_options.preconditioner != NULL) {
|
||
|
z.setZero();
|
||
|
per_solve_options.preconditioner->RightMultiply(r.data(), z.data());
|
||
|
} else {
|
||
|
z = r;
|
||
|
}
|
||
|
|
||
|
double last_rho = rho;
|
||
|
rho = r.dot(z);
|
||
|
if (IsZeroOrInfinity(rho)) {
|
||
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
||
|
summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (summary.num_iterations == 1) {
|
||
|
p = z;
|
||
|
} else {
|
||
|
double beta = rho / last_rho;
|
||
|
if (IsZeroOrInfinity(beta)) {
|
||
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
||
|
summary.message = StringPrintf(
|
||
|
"Numerical failure. beta = rho_n / rho_{n-1} = %e, "
|
||
|
"rho_n = %e, rho_{n-1} = %e", beta, rho, last_rho);
|
||
|
break;
|
||
|
}
|
||
|
p = z + beta * p;
|
||
|
}
|
||
|
|
||
|
Vector& q = z;
|
||
|
q.setZero();
|
||
|
A->RightMultiply(p.data(), q.data());
|
||
|
const double pq = p.dot(q);
|
||
|
if ((pq <= 0) || IsInfinite(pq)) {
|
||
|
summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
|
||
|
summary.message = StringPrintf(
|
||
|
"Matrix is indefinite, no more progress can be made. "
|
||
|
"p'q = %e. |p| = %e, |q| = %e",
|
||
|
pq, p.norm(), q.norm());
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
const double alpha = rho / pq;
|
||
|
if (IsInfinite(alpha)) {
|
||
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
||
|
summary.message =
|
||
|
StringPrintf("Numerical failure. alpha = rho / pq = %e, "
|
||
|
"rho = %e, pq = %e.", alpha, rho, pq);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
xref = xref + alpha * p;
|
||
|
|
||
|
// Ideally we would just use the update r = r - alpha*q to keep
|
||
|
// track of the residual vector. However this estimate tends to
|
||
|
// drift over time due to round off errors. Thus every
|
||
|
// residual_reset_period iterations, we calculate the residual as
|
||
|
// r = b - Ax. We do not do this every iteration because this
|
||
|
// requires an additional matrix vector multiply which would
|
||
|
// double the complexity of the CG algorithm.
|
||
|
if (summary.num_iterations % options_.residual_reset_period == 0) {
|
||
|
tmp.setZero();
|
||
|
A->RightMultiply(x, tmp.data());
|
||
|
r = bref - tmp;
|
||
|
} else {
|
||
|
r = r - alpha * q;
|
||
|
}
|
||
|
|
||
|
// Quadratic model based termination.
|
||
|
// Q1 = x'Ax - 2 * b' x.
|
||
|
const double Q1 = -1.0 * xref.dot(bref + r);
|
||
|
|
||
|
// For PSD matrices A, let
|
||
|
//
|
||
|
// Q(x) = x'Ax - 2b'x
|
||
|
//
|
||
|
// be the cost of the quadratic function defined by A and b. Then,
|
||
|
// the solver terminates at iteration i if
|
||
|
//
|
||
|
// i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
|
||
|
//
|
||
|
// This termination criterion is more useful when using CG to
|
||
|
// solve the Newton step. This particular convergence test comes
|
||
|
// from Stephen Nash's work on truncated Newton
|
||
|
// methods. References:
|
||
|
//
|
||
|
// 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
|
||
|
// Direction Within A Truncated Newton Method, Operation
|
||
|
// Research Letters 9(1990) 219-221.
|
||
|
//
|
||
|
// 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
|
||
|
// Journal of Computational and Applied Mathematics,
|
||
|
// 124(1-2), 45-59, 2000.
|
||
|
//
|
||
|
const double zeta = summary.num_iterations * (Q1 - Q0) / Q1;
|
||
|
if (zeta < per_solve_options.q_tolerance &&
|
||
|
summary.num_iterations >= options_.min_num_iterations) {
|
||
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
||
|
summary.message =
|
||
|
StringPrintf("Iteration: %d Convergence: zeta = %e < %e. |r| = %e",
|
||
|
summary.num_iterations,
|
||
|
zeta,
|
||
|
per_solve_options.q_tolerance,
|
||
|
r.norm());
|
||
|
break;
|
||
|
}
|
||
|
Q0 = Q1;
|
||
|
|
||
|
// Residual based termination.
|
||
|
norm_r = r. norm();
|
||
|
if (norm_r <= tol_r &&
|
||
|
summary.num_iterations >= options_.min_num_iterations) {
|
||
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
||
|
summary.message =
|
||
|
StringPrintf("Iteration: %d Convergence. |r| = %e <= %e.",
|
||
|
summary.num_iterations,
|
||
|
norm_r,
|
||
|
tol_r);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (summary.num_iterations >= options_.max_num_iterations) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return summary;
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|