226 lines
7.8 KiB
C++
226 lines
7.8 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
|
||
|
#include "ceres/implicit_schur_complement.h"
|
||
|
|
||
|
#include "Eigen/Dense"
|
||
|
#include "ceres/block_sparse_matrix.h"
|
||
|
#include "ceres/block_structure.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/linear_solver.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
ImplicitSchurComplement::ImplicitSchurComplement(
|
||
|
const LinearSolver::Options& options)
|
||
|
: options_(options),
|
||
|
D_(NULL),
|
||
|
b_(NULL) {
|
||
|
}
|
||
|
|
||
|
ImplicitSchurComplement::~ImplicitSchurComplement() {
|
||
|
}
|
||
|
|
||
|
void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
|
||
|
const double* D,
|
||
|
const double* b) {
|
||
|
// Since initialization is reasonably heavy, perhaps we can save on
|
||
|
// constructing a new object everytime.
|
||
|
if (A_ == NULL) {
|
||
|
A_.reset(PartitionedMatrixViewBase::Create(options_, A));
|
||
|
}
|
||
|
|
||
|
D_ = D;
|
||
|
b_ = b;
|
||
|
|
||
|
// Initialize temporary storage and compute the block diagonals of
|
||
|
// E'E and F'E.
|
||
|
if (block_diagonal_EtE_inverse_ == NULL) {
|
||
|
block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
|
||
|
if (options_.preconditioner_type == JACOBI) {
|
||
|
block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
|
||
|
}
|
||
|
rhs_.resize(A_->num_cols_f());
|
||
|
rhs_.setZero();
|
||
|
tmp_rows_.resize(A_->num_rows());
|
||
|
tmp_e_cols_.resize(A_->num_cols_e());
|
||
|
tmp_e_cols_2_.resize(A_->num_cols_e());
|
||
|
tmp_f_cols_.resize(A_->num_cols_f());
|
||
|
} else {
|
||
|
A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
|
||
|
if (options_.preconditioner_type == JACOBI) {
|
||
|
A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The block diagonals of the augmented linear system contain
|
||
|
// contributions from the diagonal D if it is non-null. Add that to
|
||
|
// the block diagonals and invert them.
|
||
|
AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
|
||
|
if (options_.preconditioner_type == JACOBI) {
|
||
|
AddDiagonalAndInvert((D_ == NULL) ? NULL : D_ + A_->num_cols_e(),
|
||
|
block_diagonal_FtF_inverse_.get());
|
||
|
}
|
||
|
|
||
|
// Compute the RHS of the Schur complement system.
|
||
|
UpdateRhs();
|
||
|
}
|
||
|
|
||
|
// Evaluate the product
|
||
|
//
|
||
|
// Sx = [F'F - F'E (E'E)^-1 E'F]x
|
||
|
//
|
||
|
// By breaking it down into individual matrix vector products
|
||
|
// involving the matrices E and F. This is implemented using a
|
||
|
// PartitionedMatrixView of the input matrix A.
|
||
|
void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
|
||
|
// y1 = F x
|
||
|
tmp_rows_.setZero();
|
||
|
A_->RightMultiplyF(x, tmp_rows_.data());
|
||
|
|
||
|
// y2 = E' y1
|
||
|
tmp_e_cols_.setZero();
|
||
|
A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
|
||
|
|
||
|
// y3 = -(E'E)^-1 y2
|
||
|
tmp_e_cols_2_.setZero();
|
||
|
block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
|
||
|
tmp_e_cols_2_.data());
|
||
|
tmp_e_cols_2_ *= -1.0;
|
||
|
|
||
|
// y1 = y1 + E y3
|
||
|
A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
|
||
|
|
||
|
// y5 = D * x
|
||
|
if (D_ != NULL) {
|
||
|
ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
|
||
|
VectorRef(y, num_cols()) =
|
||
|
(Dref.array().square() *
|
||
|
ConstVectorRef(x, num_cols()).array()).matrix();
|
||
|
} else {
|
||
|
VectorRef(y, num_cols()).setZero();
|
||
|
}
|
||
|
|
||
|
// y = y5 + F' y1
|
||
|
A_->LeftMultiplyF(tmp_rows_.data(), y);
|
||
|
}
|
||
|
|
||
|
// Given a block diagonal matrix and an optional array of diagonal
|
||
|
// entries D, add them to the diagonal of the matrix and compute the
|
||
|
// inverse of each diagonal block.
|
||
|
void ImplicitSchurComplement::AddDiagonalAndInvert(
|
||
|
const double* D,
|
||
|
BlockSparseMatrix* block_diagonal) {
|
||
|
const CompressedRowBlockStructure* block_diagonal_structure =
|
||
|
block_diagonal->block_structure();
|
||
|
for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
|
||
|
const int row_block_pos = block_diagonal_structure->rows[r].block.position;
|
||
|
const int row_block_size = block_diagonal_structure->rows[r].block.size;
|
||
|
const Cell& cell = block_diagonal_structure->rows[r].cells[0];
|
||
|
MatrixRef m(block_diagonal->mutable_values() + cell.position,
|
||
|
row_block_size, row_block_size);
|
||
|
|
||
|
if (D != NULL) {
|
||
|
ConstVectorRef d(D + row_block_pos, row_block_size);
|
||
|
m += d.array().square().matrix().asDiagonal();
|
||
|
}
|
||
|
|
||
|
m = m
|
||
|
.selfadjointView<Eigen::Upper>()
|
||
|
.llt()
|
||
|
.solve(Matrix::Identity(row_block_size, row_block_size));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Similar to RightMultiply, use the block structure of the matrix A
|
||
|
// to compute y = (E'E)^-1 (E'b - E'F x).
|
||
|
void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
|
||
|
const int num_cols_e = A_->num_cols_e();
|
||
|
const int num_cols_f = A_->num_cols_f();
|
||
|
const int num_cols = A_->num_cols();
|
||
|
const int num_rows = A_->num_rows();
|
||
|
|
||
|
// y1 = F x
|
||
|
tmp_rows_.setZero();
|
||
|
A_->RightMultiplyF(x, tmp_rows_.data());
|
||
|
|
||
|
// y2 = b - y1
|
||
|
tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
|
||
|
|
||
|
// y3 = E' y2
|
||
|
tmp_e_cols_.setZero();
|
||
|
A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
|
||
|
|
||
|
// y = (E'E)^-1 y3
|
||
|
VectorRef(y, num_cols).setZero();
|
||
|
block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
|
||
|
|
||
|
// The full solution vector y has two blocks. The first block of
|
||
|
// variables corresponds to the eliminated variables, which we just
|
||
|
// computed via back substitution. The second block of variables
|
||
|
// corresponds to the Schur complement system, so we just copy those
|
||
|
// values from the solution to the Schur complement.
|
||
|
VectorRef(y + num_cols_e, num_cols_f) = ConstVectorRef(x, num_cols_f);
|
||
|
}
|
||
|
|
||
|
// Compute the RHS of the Schur complement system.
|
||
|
//
|
||
|
// rhs = F'b - F'E (E'E)^-1 E'b
|
||
|
//
|
||
|
// Like BackSubstitute, we use the block structure of A to implement
|
||
|
// this using a series of matrix vector products.
|
||
|
void ImplicitSchurComplement::UpdateRhs() {
|
||
|
// y1 = E'b
|
||
|
tmp_e_cols_.setZero();
|
||
|
A_->LeftMultiplyE(b_, tmp_e_cols_.data());
|
||
|
|
||
|
// y2 = (E'E)^-1 y1
|
||
|
Vector y2 = Vector::Zero(A_->num_cols_e());
|
||
|
block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
|
||
|
|
||
|
// y3 = E y2
|
||
|
tmp_rows_.setZero();
|
||
|
A_->RightMultiplyE(y2.data(), tmp_rows_.data());
|
||
|
|
||
|
// y3 = b - y3
|
||
|
tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
|
||
|
|
||
|
// rhs = F' y3
|
||
|
rhs_.setZero();
|
||
|
A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|