155 lines
4.8 KiB
C
155 lines
4.8 KiB
C
|
|
||
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_ORDERING_H
|
||
|
#define EIGEN_ORDERING_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
#include "Eigen_Colamd.h"
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
/** \internal
|
||
|
* \ingroup OrderingMethods_Module
|
||
|
* \returns the symmetric pattern A^T+A from the input matrix A.
|
||
|
* FIXME: The values should not be considered here
|
||
|
*/
|
||
|
template<typename MatrixType>
|
||
|
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
|
||
|
{
|
||
|
MatrixType C;
|
||
|
C = mat.transpose(); // NOTE: Could be costly
|
||
|
for (int i = 0; i < C.rows(); i++)
|
||
|
{
|
||
|
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
|
||
|
it.valueRef() = 0.0;
|
||
|
}
|
||
|
symmat = C + mat;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#ifndef EIGEN_MPL2_ONLY
|
||
|
|
||
|
/** \ingroup OrderingMethods_Module
|
||
|
* \class AMDOrdering
|
||
|
*
|
||
|
* Functor computing the \em approximate \em minimum \em degree ordering
|
||
|
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
|
||
|
* \tparam Index The type of indices of the matrix
|
||
|
* \sa COLAMDOrdering
|
||
|
*/
|
||
|
template <typename Index>
|
||
|
class AMDOrdering
|
||
|
{
|
||
|
public:
|
||
|
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||
|
|
||
|
/** Compute the permutation vector from a sparse matrix
|
||
|
* This routine is much faster if the input matrix is column-major
|
||
|
*/
|
||
|
template <typename MatrixType>
|
||
|
void operator()(const MatrixType& mat, PermutationType& perm)
|
||
|
{
|
||
|
// Compute the symmetric pattern
|
||
|
SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
|
||
|
internal::ordering_helper_at_plus_a(mat,symm);
|
||
|
|
||
|
// Call the AMD routine
|
||
|
//m_mat.prune(keep_diag());
|
||
|
internal::minimum_degree_ordering(symm, perm);
|
||
|
}
|
||
|
|
||
|
/** Compute the permutation with a selfadjoint matrix */
|
||
|
template <typename SrcType, unsigned int SrcUpLo>
|
||
|
void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
|
||
|
{
|
||
|
SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat;
|
||
|
|
||
|
// Call the AMD routine
|
||
|
// m_mat.prune(keep_diag()); //Remove the diagonal elements
|
||
|
internal::minimum_degree_ordering(C, perm);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif // EIGEN_MPL2_ONLY
|
||
|
|
||
|
/** \ingroup OrderingMethods_Module
|
||
|
* \class NaturalOrdering
|
||
|
*
|
||
|
* Functor computing the natural ordering (identity)
|
||
|
*
|
||
|
* \note Returns an empty permutation matrix
|
||
|
* \tparam Index The type of indices of the matrix
|
||
|
*/
|
||
|
template <typename Index>
|
||
|
class NaturalOrdering
|
||
|
{
|
||
|
public:
|
||
|
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||
|
|
||
|
/** Compute the permutation vector from a column-major sparse matrix */
|
||
|
template <typename MatrixType>
|
||
|
void operator()(const MatrixType& /*mat*/, PermutationType& perm)
|
||
|
{
|
||
|
perm.resize(0);
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
/** \ingroup OrderingMethods_Module
|
||
|
* \class COLAMDOrdering
|
||
|
*
|
||
|
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
||
|
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
||
|
*/
|
||
|
template<typename Index>
|
||
|
class COLAMDOrdering
|
||
|
{
|
||
|
public:
|
||
|
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||
|
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||
|
|
||
|
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
||
|
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||
|
*/
|
||
|
template <typename MatrixType>
|
||
|
void operator() (const MatrixType& mat, PermutationType& perm)
|
||
|
{
|
||
|
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
||
|
|
||
|
Index m = mat.rows();
|
||
|
Index n = mat.cols();
|
||
|
Index nnz = mat.nonZeros();
|
||
|
// Get the recommended value of Alen to be used by colamd
|
||
|
Index Alen = internal::colamd_recommended(nnz, m, n);
|
||
|
// Set the default parameters
|
||
|
double knobs [COLAMD_KNOBS];
|
||
|
Index stats [COLAMD_STATS];
|
||
|
internal::colamd_set_defaults(knobs);
|
||
|
|
||
|
IndexVector p(n+1), A(Alen);
|
||
|
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||
|
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||
|
// Call Colamd routine to compute the ordering
|
||
|
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||
|
EIGEN_UNUSED_VARIABLE(info);
|
||
|
eigen_assert( info && "COLAMD failed " );
|
||
|
|
||
|
perm.resize(n);
|
||
|
for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif
|