793 lines
22 KiB
C
793 lines
22 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_MATHFUNCTIONS_H
|
||
|
#define EIGEN_MATHFUNCTIONS_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
/** \internal \struct global_math_functions_filtering_base
|
||
|
*
|
||
|
* What it does:
|
||
|
* Defines a typedef 'type' as follows:
|
||
|
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
|
||
|
* global_math_functions_filtering_base<T>::type is a typedef for it.
|
||
|
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
|
||
|
*
|
||
|
* How it's used:
|
||
|
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
|
||
|
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
|
||
|
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
|
||
|
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
|
||
|
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
|
||
|
*
|
||
|
* How it's implemented:
|
||
|
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
|
||
|
* the typename dummy by an integer template parameter, it doesn't work anymore!
|
||
|
*/
|
||
|
|
||
|
template<typename T, typename dummy = void>
|
||
|
struct global_math_functions_filtering_base
|
||
|
{
|
||
|
typedef T type;
|
||
|
};
|
||
|
|
||
|
template<typename T> struct always_void { typedef void type; };
|
||
|
|
||
|
template<typename T>
|
||
|
struct global_math_functions_filtering_base
|
||
|
<T,
|
||
|
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
|
||
|
>
|
||
|
{
|
||
|
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
|
||
|
};
|
||
|
|
||
|
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
|
||
|
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of real *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
||
|
struct real_default_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
return x;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct real_default_impl<Scalar,true>
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
using std::real;
|
||
|
return real(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct real_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real type;
|
||
|
};
|
||
|
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of imag *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
||
|
struct imag_default_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar&)
|
||
|
{
|
||
|
return RealScalar(0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct imag_default_impl<Scalar,true>
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
using std::imag;
|
||
|
return imag(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct imag_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of real_ref *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct real_ref_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar& run(Scalar& x)
|
||
|
{
|
||
|
return reinterpret_cast<RealScalar*>(&x)[0];
|
||
|
}
|
||
|
static inline const RealScalar& run(const Scalar& x)
|
||
|
{
|
||
|
return reinterpret_cast<const RealScalar*>(&x)[0];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct real_ref_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real & type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of imag_ref *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsComplex>
|
||
|
struct imag_ref_default_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar& run(Scalar& x)
|
||
|
{
|
||
|
return reinterpret_cast<RealScalar*>(&x)[1];
|
||
|
}
|
||
|
static inline const RealScalar& run(const Scalar& x)
|
||
|
{
|
||
|
return reinterpret_cast<RealScalar*>(&x)[1];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct imag_ref_default_impl<Scalar, false>
|
||
|
{
|
||
|
static inline Scalar run(Scalar&)
|
||
|
{
|
||
|
return Scalar(0);
|
||
|
}
|
||
|
static inline const Scalar run(const Scalar&)
|
||
|
{
|
||
|
return Scalar(0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct imag_ref_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real & type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of conj *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
||
|
struct conj_impl
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x)
|
||
|
{
|
||
|
return x;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct conj_impl<Scalar,true>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x)
|
||
|
{
|
||
|
using std::conj;
|
||
|
return conj(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct conj_retval
|
||
|
{
|
||
|
typedef Scalar type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of abs2 *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar,bool IsComplex>
|
||
|
struct abs2_impl_default
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
return x*x;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct abs2_impl_default<Scalar, true> // IsComplex
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
return real(x)*real(x) + imag(x)*imag(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct abs2_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct abs2_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of norm1 *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsComplex>
|
||
|
struct norm1_default_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
return abs(real(x)) + abs(imag(x));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct norm1_default_impl<Scalar, false>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
return abs(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct norm1_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of hypot *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct hypot_impl
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline RealScalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
using std::max;
|
||
|
using std::min;
|
||
|
using std::abs;
|
||
|
using std::sqrt;
|
||
|
RealScalar _x = abs(x);
|
||
|
RealScalar _y = abs(y);
|
||
|
RealScalar p = (max)(_x, _y);
|
||
|
if(p==RealScalar(0)) return RealScalar(0);
|
||
|
RealScalar q = (min)(_x, _y);
|
||
|
RealScalar qp = q/p;
|
||
|
return p * sqrt(RealScalar(1) + qp*qp);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct hypot_retval
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of cast *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename OldType, typename NewType>
|
||
|
struct cast_impl
|
||
|
{
|
||
|
static inline NewType run(const OldType& x)
|
||
|
{
|
||
|
return static_cast<NewType>(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
|
||
|
|
||
|
template<typename OldType, typename NewType>
|
||
|
inline NewType cast(const OldType& x)
|
||
|
{
|
||
|
return cast_impl<OldType, NewType>::run(x);
|
||
|
}
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of atanh2 *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsInteger>
|
||
|
struct atanh2_default_impl
|
||
|
{
|
||
|
typedef Scalar retval;
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
using std::abs;
|
||
|
using std::log;
|
||
|
using std::sqrt;
|
||
|
Scalar z = x / y;
|
||
|
if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
|
||
|
return RealScalar(0.5) * log((y + x) / (y - x));
|
||
|
else
|
||
|
return z + z*z*z / RealScalar(3);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct atanh2_default_impl<Scalar, true>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar&, const Scalar&)
|
||
|
{
|
||
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||
|
return Scalar(0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct atanh2_retval
|
||
|
{
|
||
|
typedef Scalar type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of pow *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar, bool IsInteger>
|
||
|
struct pow_default_impl
|
||
|
{
|
||
|
typedef Scalar retval;
|
||
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
using std::pow;
|
||
|
return pow(x, y);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct pow_default_impl<Scalar, true>
|
||
|
{
|
||
|
static inline Scalar run(Scalar x, Scalar y)
|
||
|
{
|
||
|
Scalar res(1);
|
||
|
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
|
||
|
if(y & 1) res *= x;
|
||
|
y >>= 1;
|
||
|
while(y)
|
||
|
{
|
||
|
x *= x;
|
||
|
if(y&1) res *= x;
|
||
|
y >>= 1;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct pow_retval
|
||
|
{
|
||
|
typedef Scalar type;
|
||
|
};
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of random *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar,
|
||
|
bool IsComplex,
|
||
|
bool IsInteger>
|
||
|
struct random_default_impl {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct random_retval
|
||
|
{
|
||
|
typedef Scalar type;
|
||
|
};
|
||
|
|
||
|
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
|
||
|
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct random_default_impl<Scalar, false, false>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
|
||
|
}
|
||
|
static inline Scalar run()
|
||
|
{
|
||
|
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
enum {
|
||
|
floor_log2_terminate,
|
||
|
floor_log2_move_up,
|
||
|
floor_log2_move_down,
|
||
|
floor_log2_bogus
|
||
|
};
|
||
|
|
||
|
template<unsigned int n, int lower, int upper> struct floor_log2_selector
|
||
|
{
|
||
|
enum { middle = (lower + upper) / 2,
|
||
|
value = (upper <= lower + 1) ? int(floor_log2_terminate)
|
||
|
: (n < (1 << middle)) ? int(floor_log2_move_down)
|
||
|
: (n==0) ? int(floor_log2_bogus)
|
||
|
: int(floor_log2_move_up)
|
||
|
};
|
||
|
};
|
||
|
|
||
|
template<unsigned int n,
|
||
|
int lower = 0,
|
||
|
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
|
||
|
int selector = floor_log2_selector<n, lower, upper>::value>
|
||
|
struct floor_log2 {};
|
||
|
|
||
|
template<unsigned int n, int lower, int upper>
|
||
|
struct floor_log2<n, lower, upper, floor_log2_move_down>
|
||
|
{
|
||
|
enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
|
||
|
};
|
||
|
|
||
|
template<unsigned int n, int lower, int upper>
|
||
|
struct floor_log2<n, lower, upper, floor_log2_move_up>
|
||
|
{
|
||
|
enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
|
||
|
};
|
||
|
|
||
|
template<unsigned int n, int lower, int upper>
|
||
|
struct floor_log2<n, lower, upper, floor_log2_terminate>
|
||
|
{
|
||
|
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
|
||
|
};
|
||
|
|
||
|
template<unsigned int n, int lower, int upper>
|
||
|
struct floor_log2<n, lower, upper, floor_log2_bogus>
|
||
|
{
|
||
|
// no value, error at compile time
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct random_default_impl<Scalar, false, true>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
|
||
|
if(y<x)
|
||
|
return x;
|
||
|
// the following difference might overflow on a 32 bits system,
|
||
|
// but since y>=x the result converted to an unsigned long is still correct.
|
||
|
std::size_t range = ScalarX(y)-ScalarX(x);
|
||
|
std::size_t offset = 0;
|
||
|
// rejection sampling
|
||
|
std::size_t divisor = 1;
|
||
|
std::size_t multiplier = 1;
|
||
|
if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1);
|
||
|
else multiplier = 1 + range/(std::size_t(RAND_MAX)+1);
|
||
|
do {
|
||
|
offset = (std::size_t(std::rand()) * multiplier) / divisor;
|
||
|
} while (offset > range);
|
||
|
return Scalar(ScalarX(x) + offset);
|
||
|
}
|
||
|
|
||
|
static inline Scalar run()
|
||
|
{
|
||
|
#ifdef EIGEN_MAKING_DOCS
|
||
|
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
|
||
|
#else
|
||
|
enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
|
||
|
scalar_bits = sizeof(Scalar) * CHAR_BIT,
|
||
|
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
|
||
|
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
|
||
|
};
|
||
|
return Scalar((std::rand() >> shift) - offset);
|
||
|
#endif
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct random_default_impl<Scalar, true, false>
|
||
|
{
|
||
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return Scalar(random(real(x), real(y)),
|
||
|
random(imag(x), imag(y)));
|
||
|
}
|
||
|
static inline Scalar run()
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
return Scalar(random<RealScalar>(), random<RealScalar>());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
|
||
|
}
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Generic math function *
|
||
|
****************************************************************************/
|
||
|
|
||
|
namespace numext {
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
|
||
|
{
|
||
|
return internal::real_ref_impl<Scalar>::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
|
||
|
{
|
||
|
return internal::imag_ref_impl<Scalar>::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
|
||
|
{
|
||
|
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
|
||
|
}
|
||
|
|
||
|
// std::isfinite is non standard, so let's define our own version,
|
||
|
// even though it is not very efficient.
|
||
|
template<typename T> bool (isfinite)(const T& x)
|
||
|
{
|
||
|
return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
|
||
|
}
|
||
|
|
||
|
} // end namespace numext
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
/****************************************************************************
|
||
|
* Implementation of fuzzy comparisons *
|
||
|
****************************************************************************/
|
||
|
|
||
|
template<typename Scalar,
|
||
|
bool IsComplex,
|
||
|
bool IsInteger>
|
||
|
struct scalar_fuzzy_default_impl {};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct scalar_fuzzy_default_impl<Scalar, false, false>
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
template<typename OtherScalar>
|
||
|
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
||
|
{
|
||
|
using std::abs;
|
||
|
return abs(x) <= abs(y) * prec;
|
||
|
}
|
||
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||
|
{
|
||
|
using std::min;
|
||
|
using std::abs;
|
||
|
return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
|
||
|
}
|
||
|
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||
|
{
|
||
|
return x <= y || isApprox(x, y, prec);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct scalar_fuzzy_default_impl<Scalar, false, true>
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
template<typename OtherScalar>
|
||
|
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
|
||
|
{
|
||
|
return x == Scalar(0);
|
||
|
}
|
||
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
|
||
|
{
|
||
|
return x == y;
|
||
|
}
|
||
|
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
|
||
|
{
|
||
|
return x <= y;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct scalar_fuzzy_default_impl<Scalar, true, false>
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
template<typename OtherScalar>
|
||
|
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
||
|
{
|
||
|
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
|
||
|
}
|
||
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||
|
{
|
||
|
using std::min;
|
||
|
return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Scalar>
|
||
|
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
||
|
|
||
|
template<typename Scalar, typename OtherScalar>
|
||
|
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
|
||
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
||
|
{
|
||
|
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline bool isApprox(const Scalar& x, const Scalar& y,
|
||
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
||
|
{
|
||
|
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
|
||
|
}
|
||
|
|
||
|
template<typename Scalar>
|
||
|
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
|
||
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
||
|
{
|
||
|
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
|
||
|
}
|
||
|
|
||
|
/******************************************
|
||
|
*** The special case of the bool type ***
|
||
|
******************************************/
|
||
|
|
||
|
template<> struct random_impl<bool>
|
||
|
{
|
||
|
static inline bool run()
|
||
|
{
|
||
|
return random<int>(0,1)==0 ? false : true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<> struct scalar_fuzzy_impl<bool>
|
||
|
{
|
||
|
typedef bool RealScalar;
|
||
|
|
||
|
template<typename OtherScalar>
|
||
|
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
|
||
|
{
|
||
|
return !x;
|
||
|
}
|
||
|
|
||
|
static inline bool isApprox(bool x, bool y, bool)
|
||
|
{
|
||
|
return x == y;
|
||
|
}
|
||
|
|
||
|
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
|
||
|
{
|
||
|
return (!x) || y;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_MATHFUNCTIONS_H
|