2018-04-14 16:17:00 +03:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
2018-05-10 09:46:34 +03:00
|
|
|
# Copyright 2018 Slightech Co., Ltd. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
2018-04-14 16:17:00 +03:00
|
|
|
# pylint: disable=missing-docstring
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
|
|
|
|
TOOLBOX_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
sys.path.append(os.path.join(TOOLBOX_DIR, 'internal'))
|
|
|
|
|
|
|
|
# pylint: disable=import-error,wrong-import-position
|
2018-04-15 16:32:14 +03:00
|
|
|
from data import ROSBag, MYNTEYE, What
|
2018-04-14 16:17:00 +03:00
|
|
|
|
|
|
|
ANGLE_DEGREES = 'd'
|
|
|
|
ANGLE_RADIANS = 'r'
|
|
|
|
ANGLE_UNITS = (ANGLE_DEGREES, ANGLE_RADIANS)
|
|
|
|
|
|
|
|
BIN_IMG_NAME = 'stamp_analytics_img.bin'
|
|
|
|
BIN_IMU_NAME = 'stamp_analytics_imu.bin'
|
|
|
|
|
|
|
|
RESULT_FIGURE = 'stamp_analytics.png'
|
|
|
|
|
|
|
|
|
2019-01-15 13:35:42 +02:00
|
|
|
IMU_ALL = 0
|
|
|
|
IMU_ACCEL = 1
|
|
|
|
IMU_GYRO = 2
|
|
|
|
|
|
|
|
|
2018-04-14 16:17:00 +03:00
|
|
|
class BinDataset(object):
|
|
|
|
|
|
|
|
def __init__(self, path, dataset_creator):
|
|
|
|
self.path = path
|
|
|
|
self.dataset_creator = dataset_creator
|
|
|
|
self._digest()
|
|
|
|
|
|
|
|
def _digest(self):
|
|
|
|
bindir = os.path.splitext(self.path)[0]
|
|
|
|
binimg = os.path.join(bindir, BIN_IMG_NAME)
|
|
|
|
binimu = os.path.join(bindir, BIN_IMU_NAME)
|
|
|
|
if os.path.isfile(binimg) and os.path.isfile(binimu):
|
|
|
|
print('find binary files ...')
|
|
|
|
print(' binimg: {}'.format(binimg))
|
|
|
|
print(' binimu: {}'.format(binimu))
|
|
|
|
while True:
|
|
|
|
sys.stdout.write('Do you want to use it directly? [Y/n] ')
|
|
|
|
choice = raw_input().lower()
|
|
|
|
if choice == '' or choice == 'y':
|
|
|
|
self._binimg = binimg
|
|
|
|
self._binimu = binimu
|
|
|
|
self._has_img = True
|
|
|
|
self._has_imu = True
|
|
|
|
return
|
|
|
|
elif choice == 'n':
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
print('Please respond with \'y\' or \'n\'.')
|
|
|
|
self._convert()
|
|
|
|
|
|
|
|
def _convert(self):
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
dataset = self.dataset_creator(self.path)
|
|
|
|
bindir = os.path.splitext(self.path)[0]
|
|
|
|
if not os.path.exists(bindir):
|
|
|
|
os.makedirs(bindir)
|
|
|
|
binimg = os.path.join(bindir, BIN_IMG_NAME)
|
|
|
|
binimu = os.path.join(bindir, BIN_IMU_NAME)
|
|
|
|
print('save to binary files ...')
|
|
|
|
print(' binimg: {}'.format(binimg))
|
|
|
|
print(' binimu: {}'.format(binimu))
|
|
|
|
|
|
|
|
has_img = False
|
|
|
|
has_imu = False
|
|
|
|
with open(binimg, 'wb') as f_img, open(binimu, 'wb') as f_imu:
|
|
|
|
img_count = 0
|
|
|
|
imu_count = 0
|
|
|
|
for result in dataset.generate(What.img_left, What.imu):
|
|
|
|
if What.img_left in result:
|
|
|
|
img = result[What.img_left]
|
|
|
|
np.array([(
|
|
|
|
img.timestamp
|
|
|
|
)], dtype="f8").tofile(f_img)
|
|
|
|
img_count = img_count + 1
|
|
|
|
has_img = True
|
|
|
|
if What.imu in result:
|
|
|
|
imu = result[What.imu]
|
|
|
|
np.array([(
|
2018-08-14 05:15:42 +03:00
|
|
|
imu.timestamp, imu.flag,
|
2018-04-14 16:17:00 +03:00
|
|
|
imu.accel_x, imu.accel_y, imu.accel_z,
|
|
|
|
imu.gyro_x, imu.gyro_y, imu.gyro_z
|
2018-08-14 05:15:42 +03:00
|
|
|
)], dtype="f8, i4, f8, f8, f8, f8, f8, f8").tofile(f_imu)
|
2018-04-14 16:17:00 +03:00
|
|
|
imu_count = imu_count + 1
|
|
|
|
has_imu = True
|
|
|
|
sys.stdout.write('\r img: {}, imu: {}'.format(img_count, imu_count))
|
|
|
|
sys.stdout.write('\n')
|
|
|
|
|
|
|
|
# pylint: disable=attribute-defined-outside-init
|
|
|
|
self._binimg = binimg
|
|
|
|
self._binimu = binimu
|
|
|
|
self._has_img = has_img
|
|
|
|
self._has_imu = has_imu
|
|
|
|
|
|
|
|
def stamp_analytics(self, args):
|
|
|
|
outdir = args.outdir
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
if self.has_img:
|
|
|
|
# pd.cut fails on readonly arrays
|
|
|
|
# https://github.com/pandas-dev/pandas/issues/18773
|
|
|
|
# imgs = np.memmap(self._binimg, dtype=[
|
|
|
|
# ('t', 'f8')
|
|
|
|
# ], mode='r')
|
|
|
|
imgs = np.fromfile(self._binimg, dtype=[
|
|
|
|
('t', 'f8')
|
|
|
|
])
|
|
|
|
else:
|
|
|
|
sys.exit("Error: there are no imgs.")
|
|
|
|
|
|
|
|
if self.has_imu:
|
|
|
|
imus = np.memmap(self._binimu, dtype=[
|
2018-08-14 05:15:42 +03:00
|
|
|
('t', 'f8'), ('flag', 'i4'),
|
2018-04-14 16:17:00 +03:00
|
|
|
('accel_x', 'f8'), ('accel_y', 'f8'), ('accel_z', 'f8'),
|
|
|
|
('gyro_x', 'f8'), ('gyro_y', 'f8'), ('gyro_z', 'f8'),
|
|
|
|
], mode='r')
|
|
|
|
else:
|
|
|
|
sys.exit("Error: there are no imus.")
|
|
|
|
|
|
|
|
period_img = 1. / args.rate_img
|
|
|
|
period_imu = 1. / args.rate_imu
|
|
|
|
print('\nrate (Hz)')
|
|
|
|
print(' img: {}, imu: {}'.format(args.rate_img, args.rate_imu))
|
|
|
|
print('sample period (s)')
|
|
|
|
print(' img: {}, imu: {}'.format(period_img, period_imu))
|
|
|
|
|
|
|
|
imgs_t_diff = np.diff(imgs['t'])
|
2018-08-14 05:15:42 +03:00
|
|
|
# imus_t_diff = np.diff(imus['t'])
|
2018-04-14 16:17:00 +03:00
|
|
|
|
2019-01-15 13:35:42 +02:00
|
|
|
accel = imus[(imus['flag'] == IMU_ALL) | (imus['flag'] == IMU_ACCEL)]
|
2018-08-14 05:15:42 +03:00
|
|
|
accel_t_diff = np.diff(accel['t'])
|
2019-01-15 13:35:42 +02:00
|
|
|
gyro = imus[(imus['flag'] == IMU_ALL) | (imus['flag'] == IMU_GYRO)]
|
2018-08-14 05:15:42 +03:00
|
|
|
gyro_t_diff = np.diff(gyro['t'])
|
|
|
|
|
|
|
|
print('\ncount')
|
|
|
|
print(' imgs: {}, imus: {}, accel: {}, gyro: {}'.format(
|
|
|
|
imgs.size, imus.size, accel.size, gyro.size))
|
2018-04-14 16:17:00 +03:00
|
|
|
print('\ndiff count')
|
2018-08-14 05:15:42 +03:00
|
|
|
print(' imgs_t_diff: {}, accel_t_diff: {}, gyro_t_diff: {}'.format(
|
|
|
|
imgs_t_diff.size, accel_t_diff.size, gyro_t_diff.size))
|
2018-04-14 16:17:00 +03:00
|
|
|
|
|
|
|
print('\ndiff where (factor={})'.format(args.factor))
|
2018-08-14 05:15:42 +03:00
|
|
|
self._print_t_diff_where('imgs', imgs_t_diff, period_img, args.factor)
|
|
|
|
# self._print_t_diff_where('imus', imus_t_diff, period_imu, args.factor)
|
|
|
|
self._print_t_diff_where('accel', accel_t_diff, period_imu, args.factor)
|
|
|
|
self._print_t_diff_where('gyro', gyro_t_diff, period_imu, args.factor)
|
2018-04-14 16:17:00 +03:00
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
bins = imgs['t']
|
|
|
|
bins_n = imgs['t'].size
|
|
|
|
bins = pd.Series(data=bins).drop_duplicates(keep='first')
|
|
|
|
|
|
|
|
print('\nimage timestamp duplicates: {}'.format(bins_n - bins.size))
|
|
|
|
|
2018-08-14 05:15:42 +03:00
|
|
|
def _cut_by_imgs_t(imus_t):
|
|
|
|
cats = pd.cut(imus_t, bins)
|
|
|
|
return cats.value_counts()
|
|
|
|
|
|
|
|
self._plot(
|
|
|
|
outdir,
|
|
|
|
imgs_t_diff,
|
|
|
|
accel_t_diff,
|
|
|
|
_cut_by_imgs_t(
|
|
|
|
accel['t']),
|
|
|
|
gyro_t_diff,
|
|
|
|
_cut_by_imgs_t(
|
|
|
|
gyro['t']))
|
|
|
|
|
|
|
|
def _print_t_diff_where(self, name, t_diff, period, factor):
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
where = np.argwhere(t_diff > period * (1 + factor))
|
|
|
|
print(' {} where diff > {}*{} ({})'.format(
|
|
|
|
name, period, 1 + factor, where.size))
|
|
|
|
for x in where:
|
|
|
|
print(' {:8d}: {:.16f}'.format(x[0], t_diff[x][0]))
|
|
|
|
|
|
|
|
where = np.argwhere(t_diff < period * (1 - factor))
|
|
|
|
print(' {} where diff < {}*{} ({})'.format(
|
|
|
|
name, period, 1 - factor, where.size))
|
|
|
|
for x in where:
|
|
|
|
print(' {:8d}: {:.16f}'.format(x[0], t_diff[x][0]))
|
2018-04-14 16:17:00 +03:00
|
|
|
|
2018-08-14 05:15:42 +03:00
|
|
|
def _plot(self, outdir, imgs_t_diff,
|
|
|
|
accel_t_diff, accel_counts, gyro_t_diff, gyro_counts):
|
2018-04-14 16:17:00 +03:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
2018-08-14 05:15:42 +03:00
|
|
|
fig_1 = plt.figure(1, [16, 12])
|
2018-04-14 16:17:00 +03:00
|
|
|
fig_1.suptitle('Stamp Analytics')
|
|
|
|
fig_1.subplots_adjust(
|
|
|
|
left=0.1,
|
|
|
|
right=0.95,
|
|
|
|
top=0.85,
|
|
|
|
bottom=0.15,
|
2018-08-14 05:15:42 +03:00
|
|
|
wspace=0.4,
|
|
|
|
hspace=0.4)
|
2018-04-14 16:17:00 +03:00
|
|
|
|
2018-08-14 05:15:42 +03:00
|
|
|
ax_imgs_t_diff = fig_1.add_subplot(231)
|
2018-04-14 16:17:00 +03:00
|
|
|
ax_imgs_t_diff.set_title('Image Timestamp Diff')
|
|
|
|
ax_imgs_t_diff.set_xlabel('diff index')
|
|
|
|
ax_imgs_t_diff.set_ylabel('diff (s)')
|
|
|
|
ax_imgs_t_diff.axis('auto')
|
|
|
|
|
|
|
|
ax_imgs_t_diff.set_xlim([0, imgs_t_diff.size])
|
|
|
|
ax_imgs_t_diff.plot(imgs_t_diff)
|
|
|
|
|
2018-08-14 05:15:42 +03:00
|
|
|
def _plot_imus(name, t_diff, counts, pos_offset=0):
|
|
|
|
ax_imus_t_diff = fig_1.add_subplot(232 + pos_offset)
|
|
|
|
ax_imus_t_diff.set_title('{} Timestamp Diff'.format(name))
|
|
|
|
ax_imus_t_diff.set_xlabel('diff index')
|
|
|
|
ax_imus_t_diff.set_ylabel('diff (s)')
|
|
|
|
ax_imus_t_diff.axis('auto')
|
|
|
|
|
|
|
|
ax_imus_t_diff.set_xlim([0, t_diff.size - 1])
|
|
|
|
ax_imus_t_diff.plot(t_diff)
|
|
|
|
|
|
|
|
ax_imus_counts = fig_1.add_subplot(233 + pos_offset)
|
|
|
|
ax_imus_counts.set_title('{} Count Per Image Intervel'.format(name))
|
|
|
|
ax_imus_counts.set_xlabel('intervel index')
|
|
|
|
ax_imus_counts.set_ylabel('imu count')
|
|
|
|
ax_imus_counts.axis('auto')
|
|
|
|
|
|
|
|
# print(counts.values)
|
|
|
|
# counts.plot(kind='line', ax=ax_imus_counts)
|
|
|
|
data = counts.values
|
|
|
|
ax_imus_counts.set_xlim([0, data.size])
|
|
|
|
ax_imus_counts.set_ylim([np.min(data) - 1, np.max(data) + 1])
|
|
|
|
ax_imus_counts.plot(data)
|
|
|
|
|
|
|
|
_plot_imus('Accel', accel_t_diff, accel_counts)
|
|
|
|
_plot_imus('Gyro', gyro_t_diff, gyro_counts, 3)
|
2018-04-14 16:17:00 +03:00
|
|
|
|
|
|
|
if outdir:
|
|
|
|
figpath = os.path.join(outdir, RESULT_FIGURE)
|
|
|
|
print('\nsave figure to:\n {}'.format(figpath))
|
|
|
|
if not os.path.exists(outdir):
|
|
|
|
os.makedirs(outdir)
|
|
|
|
fig_1.savefig(figpath, dpi=100)
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_img(self):
|
|
|
|
return self._has_img
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_imu(self):
|
|
|
|
return self._has_imu
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_args():
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
prog=os.path.basename(__file__),
|
|
|
|
formatter_class=argparse.RawTextHelpFormatter,
|
|
|
|
description='usage examples:'
|
|
|
|
'\n python %(prog)s -i DATASET')
|
|
|
|
parser.add_argument(
|
|
|
|
'-i',
|
|
|
|
'--input',
|
|
|
|
dest='input',
|
|
|
|
metavar='DATASET',
|
|
|
|
required=True,
|
|
|
|
help='the input dataset path')
|
|
|
|
parser.add_argument(
|
|
|
|
'-o',
|
|
|
|
'--outdir',
|
|
|
|
dest='outdir',
|
|
|
|
metavar='OUTDIR',
|
|
|
|
help='the output directory')
|
|
|
|
parser.add_argument(
|
|
|
|
'-c',
|
|
|
|
'--config',
|
|
|
|
dest='config',
|
|
|
|
metavar='CONFIG',
|
|
|
|
help='yaml config file about input dataset')
|
|
|
|
parser.add_argument(
|
|
|
|
'-f',
|
|
|
|
'--factor',
|
|
|
|
dest='factor',
|
|
|
|
metavar='FACTOR',
|
|
|
|
default=0.1,
|
|
|
|
type=float,
|
|
|
|
help='the wave factor (default: %(default)s)')
|
|
|
|
parser.add_argument(
|
|
|
|
'--rate-img',
|
|
|
|
dest='rate_img',
|
|
|
|
metavar='RATE',
|
2018-08-01 15:20:39 +03:00
|
|
|
default=60,
|
2018-04-14 16:17:00 +03:00
|
|
|
type=int,
|
|
|
|
help='the img rate (default: %(default)s)')
|
|
|
|
parser.add_argument(
|
|
|
|
'--rate-imu',
|
|
|
|
dest='rate_imu',
|
|
|
|
metavar='RATE',
|
2018-08-01 15:20:39 +03:00
|
|
|
default=200,
|
2018-04-14 16:17:00 +03:00
|
|
|
type=int,
|
|
|
|
help='the imu rate (default: %(default)s)')
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def _main():
|
|
|
|
args = _parse_args()
|
|
|
|
|
|
|
|
dataset_path = args.input
|
|
|
|
if not dataset_path or not os.path.exists(dataset_path):
|
|
|
|
sys.exit('Error: the dataset path not exists, %s' % dataset_path)
|
|
|
|
dataset_path = os.path.normpath(dataset_path)
|
|
|
|
|
|
|
|
outdir = args.outdir
|
|
|
|
if not args.outdir:
|
|
|
|
outdir = os.path.splitext(dataset_path)[0]
|
|
|
|
else:
|
|
|
|
outdir = os.path.abspath(outdir)
|
|
|
|
args.outdir = outdir
|
|
|
|
|
|
|
|
print('stamp analytics ...')
|
|
|
|
print(' input: %s' % dataset_path)
|
|
|
|
print(' outdir: %s' % outdir)
|
|
|
|
|
|
|
|
def dataset_creator(path):
|
|
|
|
print('open dataset ...')
|
|
|
|
if args.config:
|
|
|
|
import yaml
|
|
|
|
config = yaml.load(file(args.config, 'r'))
|
2018-04-15 16:32:14 +03:00
|
|
|
model = config['dataset']
|
|
|
|
if model == 'rosbag':
|
|
|
|
dataset = ROSBag(path, **config['rosbag'])
|
|
|
|
elif model == 'mynteye':
|
|
|
|
dataset = MYNTEYE(path)
|
|
|
|
else:
|
|
|
|
sys.exit('Error: dataset model not supported {}'.format(model))
|
2018-04-14 16:17:00 +03:00
|
|
|
else:
|
|
|
|
dataset = ROSBag(path,
|
2018-06-07 07:45:23 +03:00
|
|
|
topic_img_left='/mynteye/left/image_raw',
|
|
|
|
topic_imu='/mynteye/imu/data_raw')
|
2018-04-14 16:17:00 +03:00
|
|
|
return dataset
|
|
|
|
|
|
|
|
dataset = BinDataset(dataset_path, dataset_creator)
|
|
|
|
dataset.stamp_analytics(args)
|
|
|
|
|
|
|
|
print('stamp analytics done')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
_main()
|