168 lines
6.2 KiB
C
168 lines
6.2 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// An iterative solver for solving the Schur complement/reduced camera
|
||
|
// linear system that arise in SfM problems.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
|
||
|
#define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
|
||
|
|
||
|
#include "ceres/linear_operator.h"
|
||
|
#include "ceres/linear_solver.h"
|
||
|
#include "ceres/partitioned_matrix_view.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/types.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
class BlockSparseMatrix;
|
||
|
|
||
|
// This class implements various linear algebraic operations related
|
||
|
// to the Schur complement without explicitly forming it.
|
||
|
//
|
||
|
//
|
||
|
// Given a reactangular linear system Ax = b, where
|
||
|
//
|
||
|
// A = [E F]
|
||
|
//
|
||
|
// The normal equations are given by
|
||
|
//
|
||
|
// A'Ax = A'b
|
||
|
//
|
||
|
// |E'E E'F||y| = |E'b|
|
||
|
// |F'E F'F||z| |F'b|
|
||
|
//
|
||
|
// and the Schur complement system is given by
|
||
|
//
|
||
|
// [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b
|
||
|
//
|
||
|
// Now if we wish to solve Ax = b in the least squares sense, one way
|
||
|
// is to form this Schur complement system and solve it using
|
||
|
// Preconditioned Conjugate Gradients.
|
||
|
//
|
||
|
// The key operation in a conjugate gradient solver is the evaluation of the
|
||
|
// matrix vector product with the Schur complement
|
||
|
//
|
||
|
// S = F'F - F'E (E'E)^-1 E'F
|
||
|
//
|
||
|
// It is straightforward to see that matrix vector products with S can
|
||
|
// be evaluated without storing S in memory. Instead, given (E'E)^-1
|
||
|
// (which for our purposes is an easily inverted block diagonal
|
||
|
// matrix), it can be done in terms of matrix vector products with E,
|
||
|
// F and (E'E)^-1. This class implements this functionality and other
|
||
|
// auxilliary bits needed to implement a CG solver on the Schur
|
||
|
// complement using the PartitionedMatrixView object.
|
||
|
//
|
||
|
// THREAD SAFETY: This class is nqot thread safe. In particular, the
|
||
|
// RightMultiply (and the LeftMultiply) methods are not thread safe as
|
||
|
// they depend on mutable arrays used for the temporaries needed to
|
||
|
// compute the product y += Sx;
|
||
|
class ImplicitSchurComplement : public LinearOperator {
|
||
|
public:
|
||
|
// num_eliminate_blocks is the number of E blocks in the matrix
|
||
|
// A.
|
||
|
//
|
||
|
// preconditioner indicates whether the inverse of the matrix F'F
|
||
|
// should be computed or not as a preconditioner for the Schur
|
||
|
// Complement.
|
||
|
//
|
||
|
// TODO(sameeragarwal): Get rid of the two bools below and replace
|
||
|
// them with enums.
|
||
|
explicit ImplicitSchurComplement(const LinearSolver::Options& options);
|
||
|
virtual ~ImplicitSchurComplement();
|
||
|
|
||
|
// Initialize the Schur complement for a linear least squares
|
||
|
// problem of the form
|
||
|
//
|
||
|
// |A | x = |b|
|
||
|
// |diag(D)| |0|
|
||
|
//
|
||
|
// If D is null, then it is treated as a zero dimensional matrix. It
|
||
|
// is important that the matrix A have a BlockStructure object
|
||
|
// associated with it and has a block structure that is compatible
|
||
|
// with the SchurComplement solver.
|
||
|
void Init(const BlockSparseMatrix& A, const double* D, const double* b);
|
||
|
|
||
|
// y += Sx, where S is the Schur complement.
|
||
|
virtual void RightMultiply(const double* x, double* y) const;
|
||
|
|
||
|
// The Schur complement is a symmetric positive definite matrix,
|
||
|
// thus the left and right multiply operators are the same.
|
||
|
virtual void LeftMultiply(const double* x, double* y) const {
|
||
|
RightMultiply(x, y);
|
||
|
}
|
||
|
|
||
|
// y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to
|
||
|
// the Schur complement system, this method computes the value of
|
||
|
// the e_block variables that were eliminated to form the Schur
|
||
|
// complement.
|
||
|
void BackSubstitute(const double* x, double* y);
|
||
|
|
||
|
virtual int num_rows() const { return A_->num_cols_f(); }
|
||
|
virtual int num_cols() const { return A_->num_cols_f(); }
|
||
|
const Vector& rhs() const { return rhs_; }
|
||
|
|
||
|
const BlockSparseMatrix* block_diagonal_EtE_inverse() const {
|
||
|
return block_diagonal_EtE_inverse_.get();
|
||
|
}
|
||
|
|
||
|
const BlockSparseMatrix* block_diagonal_FtF_inverse() const {
|
||
|
return block_diagonal_FtF_inverse_.get();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix);
|
||
|
void UpdateRhs();
|
||
|
|
||
|
const LinearSolver::Options& options_;
|
||
|
|
||
|
scoped_ptr<PartitionedMatrixViewBase> A_;
|
||
|
const double* D_;
|
||
|
const double* b_;
|
||
|
|
||
|
scoped_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_;
|
||
|
scoped_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_;
|
||
|
|
||
|
Vector rhs_;
|
||
|
|
||
|
// Temporary storage vectors used to implement RightMultiply.
|
||
|
mutable Vector tmp_rows_;
|
||
|
mutable Vector tmp_e_cols_;
|
||
|
mutable Vector tmp_e_cols_2_;
|
||
|
mutable Vector tmp_f_cols_;
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
|