338 lines
14 KiB
C++
338 lines
14 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: keir@google.com (Keir Mierle)
|
||
|
|
||
|
#include "ceres/gradient_checking_cost_function.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
#include <numeric>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "ceres/cost_function.h"
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/parameter_block.h"
|
||
|
#include "ceres/problem.h"
|
||
|
#include "ceres/problem_impl.h"
|
||
|
#include "ceres/program.h"
|
||
|
#include "ceres/residual_block.h"
|
||
|
#include "ceres/dynamic_numeric_diff_cost_function.h"
|
||
|
#include "ceres/stringprintf.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::abs;
|
||
|
using std::max;
|
||
|
using std::string;
|
||
|
using std::vector;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// True if x and y have an absolute relative difference less than
|
||
|
// relative_precision and false otherwise. Stores the relative and absolute
|
||
|
// difference in relative/absolute_error if non-NULL.
|
||
|
bool IsClose(double x, double y, double relative_precision,
|
||
|
double *relative_error,
|
||
|
double *absolute_error) {
|
||
|
double local_absolute_error;
|
||
|
double local_relative_error;
|
||
|
if (!absolute_error) {
|
||
|
absolute_error = &local_absolute_error;
|
||
|
}
|
||
|
if (!relative_error) {
|
||
|
relative_error = &local_relative_error;
|
||
|
}
|
||
|
*absolute_error = abs(x - y);
|
||
|
*relative_error = *absolute_error / max(abs(x), abs(y));
|
||
|
if (x == 0 || y == 0) {
|
||
|
// If x or y is exactly zero, then relative difference doesn't have any
|
||
|
// meaning. Take the absolute difference instead.
|
||
|
*relative_error = *absolute_error;
|
||
|
}
|
||
|
return abs(*relative_error) < abs(relative_precision);
|
||
|
}
|
||
|
|
||
|
class GradientCheckingCostFunction : public CostFunction {
|
||
|
public:
|
||
|
GradientCheckingCostFunction(const CostFunction* function,
|
||
|
const NumericDiffOptions& options,
|
||
|
double relative_precision,
|
||
|
const string& extra_info)
|
||
|
: function_(function),
|
||
|
relative_precision_(relative_precision),
|
||
|
extra_info_(extra_info) {
|
||
|
DynamicNumericDiffCostFunction<CostFunction, CENTRAL>*
|
||
|
finite_diff_cost_function =
|
||
|
new DynamicNumericDiffCostFunction<CostFunction, CENTRAL>(
|
||
|
function,
|
||
|
DO_NOT_TAKE_OWNERSHIP,
|
||
|
options);
|
||
|
|
||
|
const vector<int32>& parameter_block_sizes =
|
||
|
function->parameter_block_sizes();
|
||
|
for (int i = 0; i < parameter_block_sizes.size(); ++i) {
|
||
|
finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]);
|
||
|
}
|
||
|
*mutable_parameter_block_sizes() = parameter_block_sizes;
|
||
|
set_num_residuals(function->num_residuals());
|
||
|
finite_diff_cost_function->SetNumResiduals(num_residuals());
|
||
|
finite_diff_cost_function_.reset(finite_diff_cost_function);
|
||
|
}
|
||
|
|
||
|
virtual ~GradientCheckingCostFunction() { }
|
||
|
|
||
|
virtual bool Evaluate(double const* const* parameters,
|
||
|
double* residuals,
|
||
|
double** jacobians) const {
|
||
|
if (!jacobians) {
|
||
|
// Nothing to check in this case; just forward.
|
||
|
return function_->Evaluate(parameters, residuals, NULL);
|
||
|
}
|
||
|
|
||
|
int num_residuals = function_->num_residuals();
|
||
|
|
||
|
// Make space for the jacobians of the two methods.
|
||
|
const vector<int32>& block_sizes = function_->parameter_block_sizes();
|
||
|
vector<Matrix> term_jacobians(block_sizes.size());
|
||
|
vector<Matrix> finite_difference_jacobians(block_sizes.size());
|
||
|
vector<double*> term_jacobian_pointers(block_sizes.size());
|
||
|
vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
|
||
|
for (int i = 0; i < block_sizes.size(); i++) {
|
||
|
term_jacobians[i].resize(num_residuals, block_sizes[i]);
|
||
|
term_jacobian_pointers[i] = term_jacobians[i].data();
|
||
|
finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
|
||
|
finite_difference_jacobian_pointers[i] =
|
||
|
finite_difference_jacobians[i].data();
|
||
|
}
|
||
|
|
||
|
// Evaluate the derivative using the user supplied code.
|
||
|
if (!function_->Evaluate(parameters,
|
||
|
residuals,
|
||
|
&term_jacobian_pointers[0])) {
|
||
|
LOG(WARNING) << "Function evaluation failed.";
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Evaluate the derivative using numeric derivatives.
|
||
|
finite_diff_cost_function_->Evaluate(
|
||
|
parameters,
|
||
|
residuals,
|
||
|
&finite_difference_jacobian_pointers[0]);
|
||
|
|
||
|
// See if any elements have relative error larger than the threshold.
|
||
|
int num_bad_jacobian_components = 0;
|
||
|
double worst_relative_error = 0;
|
||
|
|
||
|
// Accumulate the error message for all the jacobians, since it won't get
|
||
|
// output if there are no bad jacobian components.
|
||
|
string m;
|
||
|
for (int k = 0; k < block_sizes.size(); k++) {
|
||
|
// Copy the original jacobian blocks into the jacobians array.
|
||
|
if (jacobians[k] != NULL) {
|
||
|
MatrixRef(jacobians[k],
|
||
|
term_jacobians[k].rows(),
|
||
|
term_jacobians[k].cols()) = term_jacobians[k];
|
||
|
}
|
||
|
|
||
|
StringAppendF(&m,
|
||
|
"========== "
|
||
|
"Jacobian for " "block %d: (%ld by %ld)) "
|
||
|
"==========\n",
|
||
|
k,
|
||
|
static_cast<long>(term_jacobians[k].rows()),
|
||
|
static_cast<long>(term_jacobians[k].cols()));
|
||
|
// The funny spacing creates appropriately aligned column headers.
|
||
|
m += " block row col user dx/dy num diff dx/dy "
|
||
|
"abs error relative error parameter residual\n";
|
||
|
|
||
|
for (int i = 0; i < term_jacobians[k].rows(); i++) {
|
||
|
for (int j = 0; j < term_jacobians[k].cols(); j++) {
|
||
|
double term_jacobian = term_jacobians[k](i, j);
|
||
|
double finite_jacobian = finite_difference_jacobians[k](i, j);
|
||
|
double relative_error, absolute_error;
|
||
|
bool bad_jacobian_entry =
|
||
|
!IsClose(term_jacobian,
|
||
|
finite_jacobian,
|
||
|
relative_precision_,
|
||
|
&relative_error,
|
||
|
&absolute_error);
|
||
|
worst_relative_error = max(worst_relative_error, relative_error);
|
||
|
|
||
|
StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
|
||
|
k, i, j,
|
||
|
term_jacobian, finite_jacobian,
|
||
|
absolute_error, relative_error,
|
||
|
parameters[k][j],
|
||
|
residuals[i]);
|
||
|
|
||
|
if (bad_jacobian_entry) {
|
||
|
num_bad_jacobian_components++;
|
||
|
StringAppendF(
|
||
|
&m, " ------ (%d,%d,%d) Relative error worse than %g",
|
||
|
k, i, j, relative_precision_);
|
||
|
}
|
||
|
m += "\n";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Since there were some bad errors, dump comprehensive debug info.
|
||
|
if (num_bad_jacobian_components) {
|
||
|
string header = StringPrintf("Detected %d bad jacobian component(s). "
|
||
|
"Worst relative error was %g.\n",
|
||
|
num_bad_jacobian_components,
|
||
|
worst_relative_error);
|
||
|
if (!extra_info_.empty()) {
|
||
|
header += "Extra info for this residual: " + extra_info_ + "\n";
|
||
|
}
|
||
|
LOG(WARNING) << "\n" << header << m;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const CostFunction* function_;
|
||
|
internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
|
||
|
double relative_precision_;
|
||
|
string extra_info_;
|
||
|
};
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
CostFunction *CreateGradientCheckingCostFunction(
|
||
|
const CostFunction *cost_function,
|
||
|
double relative_step_size,
|
||
|
double relative_precision,
|
||
|
const string& extra_info) {
|
||
|
NumericDiffOptions numeric_diff_options;
|
||
|
numeric_diff_options.relative_step_size = relative_step_size;
|
||
|
|
||
|
return new GradientCheckingCostFunction(cost_function,
|
||
|
numeric_diff_options,
|
||
|
relative_precision,
|
||
|
extra_info);
|
||
|
}
|
||
|
|
||
|
ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
|
||
|
double relative_step_size,
|
||
|
double relative_precision) {
|
||
|
// We create new CostFunctions by wrapping the original CostFunction
|
||
|
// in a gradient checking CostFunction. So its okay for the
|
||
|
// ProblemImpl to take ownership of it and destroy it. The
|
||
|
// LossFunctions and LocalParameterizations are reused and since
|
||
|
// they are owned by problem_impl, gradient_checking_problem_impl
|
||
|
// should not take ownership of it.
|
||
|
Problem::Options gradient_checking_problem_options;
|
||
|
gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
|
||
|
gradient_checking_problem_options.loss_function_ownership =
|
||
|
DO_NOT_TAKE_OWNERSHIP;
|
||
|
gradient_checking_problem_options.local_parameterization_ownership =
|
||
|
DO_NOT_TAKE_OWNERSHIP;
|
||
|
|
||
|
ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
|
||
|
gradient_checking_problem_options);
|
||
|
|
||
|
Program* program = problem_impl->mutable_program();
|
||
|
|
||
|
// For every ParameterBlock in problem_impl, create a new parameter
|
||
|
// block with the same local parameterization and constancy.
|
||
|
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
|
||
|
for (int i = 0; i < parameter_blocks.size(); ++i) {
|
||
|
ParameterBlock* parameter_block = parameter_blocks[i];
|
||
|
gradient_checking_problem_impl->AddParameterBlock(
|
||
|
parameter_block->mutable_user_state(),
|
||
|
parameter_block->Size(),
|
||
|
parameter_block->mutable_local_parameterization());
|
||
|
|
||
|
if (parameter_block->IsConstant()) {
|
||
|
gradient_checking_problem_impl->SetParameterBlockConstant(
|
||
|
parameter_block->mutable_user_state());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For every ResidualBlock in problem_impl, create a new
|
||
|
// ResidualBlock by wrapping its CostFunction inside a
|
||
|
// GradientCheckingCostFunction.
|
||
|
const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
|
||
|
for (int i = 0; i < residual_blocks.size(); ++i) {
|
||
|
ResidualBlock* residual_block = residual_blocks[i];
|
||
|
|
||
|
// Build a human readable string which identifies the
|
||
|
// ResidualBlock. This is used by the GradientCheckingCostFunction
|
||
|
// when logging debugging information.
|
||
|
string extra_info = StringPrintf(
|
||
|
"Residual block id %d; depends on parameters [", i);
|
||
|
vector<double*> parameter_blocks;
|
||
|
for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
|
||
|
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
|
||
|
parameter_blocks.push_back(parameter_block->mutable_user_state());
|
||
|
StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
|
||
|
extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
|
||
|
}
|
||
|
|
||
|
// Wrap the original CostFunction in a GradientCheckingCostFunction.
|
||
|
CostFunction* gradient_checking_cost_function =
|
||
|
CreateGradientCheckingCostFunction(residual_block->cost_function(),
|
||
|
relative_step_size,
|
||
|
relative_precision,
|
||
|
extra_info);
|
||
|
|
||
|
// The const_cast is necessary because
|
||
|
// ProblemImpl::AddResidualBlock can potentially take ownership of
|
||
|
// the LossFunction, but in this case we are guaranteed that this
|
||
|
// will not be the case, so this const_cast is harmless.
|
||
|
gradient_checking_problem_impl->AddResidualBlock(
|
||
|
gradient_checking_cost_function,
|
||
|
const_cast<LossFunction*>(residual_block->loss_function()),
|
||
|
parameter_blocks);
|
||
|
}
|
||
|
|
||
|
// Normally, when a problem is given to the solver, we guarantee
|
||
|
// that the state pointers for each parameter block point to the
|
||
|
// user provided data. Since we are creating this new problem from a
|
||
|
// problem given to us at an arbitrary stage of the solve, we cannot
|
||
|
// depend on this being the case, so we explicitly call
|
||
|
// SetParameterBlockStatePtrsToUserStatePtrs to ensure that this is
|
||
|
// the case.
|
||
|
gradient_checking_problem_impl
|
||
|
->mutable_program()
|
||
|
->SetParameterBlockStatePtrsToUserStatePtrs();
|
||
|
|
||
|
return gradient_checking_problem_impl;
|
||
|
}
|
||
|
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|