271 lines
8.6 KiB
C++
271 lines
8.6 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
// tbennun@gmail.com (Tal Ben-Nun)
|
||
|
|
||
|
#include "ceres/numeric_diff_test_utils.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
#include "ceres/cost_function.h"
|
||
|
#include "ceres/internal/macros.h"
|
||
|
#include "ceres/test_util.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
bool EasyFunctor::operator()(const double* x1,
|
||
|
const double* x2,
|
||
|
double* residuals) const {
|
||
|
residuals[0] = residuals[1] = residuals[2] = 0;
|
||
|
for (int i = 0; i < 5; ++i) {
|
||
|
residuals[0] += x1[i] * x2[i];
|
||
|
residuals[2] += x2[i] * x2[i];
|
||
|
}
|
||
|
residuals[1] = residuals[0] * residuals[0];
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
|
||
|
const CostFunction& cost_function,
|
||
|
NumericDiffMethodType method) const {
|
||
|
// The x1[0] is made deliberately small to test the performance near
|
||
|
// zero.
|
||
|
double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };
|
||
|
double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
|
||
|
double *parameters[] = { &x1[0], &x2[0] };
|
||
|
|
||
|
double dydx1[15]; // 3 x 5, row major.
|
||
|
double dydx2[15]; // 3 x 5, row major.
|
||
|
double *jacobians[2] = { &dydx1[0], &dydx2[0] };
|
||
|
|
||
|
double residuals[3] = {-1e-100, -2e-100, -3e-100 };
|
||
|
|
||
|
ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
|
||
|
&residuals[0],
|
||
|
&jacobians[0]));
|
||
|
|
||
|
double expected_residuals[3];
|
||
|
EasyFunctor functor;
|
||
|
functor(x1, x2, expected_residuals);
|
||
|
EXPECT_EQ(expected_residuals[0], residuals[0]);
|
||
|
EXPECT_EQ(expected_residuals[1], residuals[1]);
|
||
|
EXPECT_EQ(expected_residuals[2], residuals[2]);
|
||
|
|
||
|
double tolerance = 0.0;
|
||
|
switch (method) {
|
||
|
default:
|
||
|
case CENTRAL:
|
||
|
tolerance = 3e-9;
|
||
|
break;
|
||
|
|
||
|
case FORWARD:
|
||
|
tolerance = 2e-5;
|
||
|
break;
|
||
|
|
||
|
case RIDDERS:
|
||
|
tolerance = 1e-13;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 5; ++i) {
|
||
|
ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1
|
||
|
ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance);
|
||
|
ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2
|
||
|
ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
|
||
|
ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3
|
||
|
ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool TranscendentalFunctor::operator()(const double* x1,
|
||
|
const double* x2,
|
||
|
double* residuals) const {
|
||
|
double x1x2 = 0;
|
||
|
for (int i = 0; i < 5; ++i) {
|
||
|
x1x2 += x1[i] * x2[i];
|
||
|
}
|
||
|
residuals[0] = sin(x1x2);
|
||
|
residuals[1] = exp(-x1x2 / 10);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
|
||
|
const CostFunction& cost_function,
|
||
|
NumericDiffMethodType method) const {
|
||
|
struct {
|
||
|
double x1[5];
|
||
|
double x2[5];
|
||
|
} kTests[] = {
|
||
|
{ { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
|
||
|
{ 9.0, 9.0, 5.0, 5.0, 1.0 },
|
||
|
},
|
||
|
{ { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
|
||
|
{ 9.0, 9.0, 5.0, 5.0, 1.0 },
|
||
|
},
|
||
|
{ { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
|
||
|
{ 0.0, 9.0, 0.0, 5.0, 0.0 },
|
||
|
},
|
||
|
{ { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
|
||
|
{ 9.0, 9.0, 5.0, 5.0, 1.0 },
|
||
|
},
|
||
|
{ { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
|
||
|
{ 0.0, 0.0, 0.0, 0.0, 0.0 },
|
||
|
},
|
||
|
{ { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
|
||
|
{ 0.0, 0.0, 0.0, 0.0, 0.0 },
|
||
|
},
|
||
|
};
|
||
|
|
||
|
for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
|
||
|
double *x1 = &(kTests[k].x1[0]);
|
||
|
double *x2 = &(kTests[k].x2[0]);
|
||
|
double *parameters[] = { x1, x2 };
|
||
|
|
||
|
double dydx1[10];
|
||
|
double dydx2[10];
|
||
|
double *jacobians[2] = { &dydx1[0], &dydx2[0] };
|
||
|
|
||
|
double residuals[2];
|
||
|
|
||
|
ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
|
||
|
&residuals[0],
|
||
|
&jacobians[0]));
|
||
|
double x1x2 = 0;
|
||
|
for (int i = 0; i < 5; ++i) {
|
||
|
x1x2 += x1[i] * x2[i];
|
||
|
}
|
||
|
|
||
|
double tolerance = 0.0;
|
||
|
switch (method) {
|
||
|
default:
|
||
|
case CENTRAL:
|
||
|
tolerance = 2e-7;
|
||
|
break;
|
||
|
|
||
|
case FORWARD:
|
||
|
tolerance = 2e-5;
|
||
|
break;
|
||
|
|
||
|
case RIDDERS:
|
||
|
tolerance = 3e-12;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 5; ++i) {
|
||
|
ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance);
|
||
|
ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance);
|
||
|
ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
|
||
|
ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool ExponentialFunctor::operator()(const double* x1,
|
||
|
double* residuals) const {
|
||
|
residuals[0] = exp(x1[0]);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
|
||
|
const CostFunction& cost_function) const {
|
||
|
// Evaluating the functor at specific points for testing.
|
||
|
double kTests[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
|
||
|
|
||
|
// Minimal tolerance w.r.t. the cost function and the tests.
|
||
|
const double kTolerance = 2e-14;
|
||
|
|
||
|
for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
|
||
|
double *parameters[] = { &kTests[k] };
|
||
|
double dydx;
|
||
|
double *jacobians[1] = { &dydx };
|
||
|
double residual;
|
||
|
|
||
|
ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
|
||
|
&residual,
|
||
|
&jacobians[0]));
|
||
|
|
||
|
|
||
|
double expected_result = exp(kTests[k]);
|
||
|
|
||
|
// Expect residual to be close to exp(x).
|
||
|
ExpectClose(residual, expected_result, kTolerance);
|
||
|
|
||
|
// Check evaluated differences. dydx should also be close to exp(x).
|
||
|
ExpectClose(dydx, expected_result, kTolerance);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool RandomizedFunctor::operator()(const double* x1,
|
||
|
double* residuals) const {
|
||
|
double random_value = static_cast<double>(rand()) /
|
||
|
static_cast<double>(RAND_MAX);
|
||
|
|
||
|
// Normalize noise to [-factor, factor].
|
||
|
random_value *= 2.0;
|
||
|
random_value -= 1.0;
|
||
|
random_value *= noise_factor_;
|
||
|
|
||
|
residuals[0] = x1[0] * x1[0] + random_value;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
|
||
|
const CostFunction& cost_function) const {
|
||
|
double kTests[] = { 0.0, 1.0, 3.0, 4.0, 50.0 };
|
||
|
|
||
|
const double kTolerance = 2e-4;
|
||
|
|
||
|
// Initialize random number generator with given seed.
|
||
|
srand(random_seed_);
|
||
|
|
||
|
for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
|
||
|
double *parameters[] = { &kTests[k] };
|
||
|
double dydx;
|
||
|
double *jacobians[1] = { &dydx };
|
||
|
double residual;
|
||
|
|
||
|
ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
|
||
|
&residual,
|
||
|
&jacobians[0]));
|
||
|
|
||
|
// Expect residual to be close to x^2 w.r.t. noise factor.
|
||
|
ExpectClose(residual, kTests[k] * kTests[k], noise_factor_);
|
||
|
|
||
|
// Check evaluated differences. (dy/dx = ~2x)
|
||
|
ExpectClose(dydx, 2 * kTests[k], kTolerance);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|