239 lines
8.1 KiB
C
239 lines
8.1 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
|
||
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_REVERSE_H
|
||
|
#define EIGEN_REVERSE_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
/** \class Reverse
|
||
|
* \ingroup Core_Module
|
||
|
*
|
||
|
* \brief Expression of the reverse of a vector or matrix
|
||
|
*
|
||
|
* \param MatrixType the type of the object of which we are taking the reverse
|
||
|
*
|
||
|
* This class represents an expression of the reverse of a vector.
|
||
|
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
|
||
|
* and most of the time this is the only way it is used.
|
||
|
*
|
||
|
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
|
||
|
*/
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template<typename MatrixType, int Direction>
|
||
|
struct traits<Reverse<MatrixType, Direction> >
|
||
|
: traits<MatrixType>
|
||
|
{
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||
|
typedef typename traits<MatrixType>::XprKind XprKind;
|
||
|
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||
|
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||
|
enum {
|
||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||
|
|
||
|
// let's enable LinearAccess only with vectorization because of the product overhead
|
||
|
LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
|
||
|
? LinearAccessBit : 0,
|
||
|
|
||
|
Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
|
||
|
|
||
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||
|
};
|
||
|
};
|
||
|
|
||
|
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
|
||
|
{
|
||
|
static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
|
||
|
};
|
||
|
|
||
|
template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
|
||
|
{
|
||
|
static inline PacketScalar run(const PacketScalar& x) { return x; }
|
||
|
};
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
template<typename MatrixType, int Direction> class Reverse
|
||
|
: public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef typename internal::dense_xpr_base<Reverse>::type Base;
|
||
|
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
|
||
|
using Base::IsRowMajor;
|
||
|
|
||
|
// The following two operators are provided to worarkound
|
||
|
// a MSVC 2013 issue. In theory, we could simply do:
|
||
|
// using Base::operator();
|
||
|
// to make const version of operator() visible.
|
||
|
// Otheriwse, they would be hidden by the non-const versions defined in this file
|
||
|
|
||
|
inline CoeffReturnType operator()(Index row, Index col) const
|
||
|
{
|
||
|
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
|
||
|
return coeff(row, col);
|
||
|
}
|
||
|
|
||
|
inline CoeffReturnType operator()(Index index) const
|
||
|
{
|
||
|
eigen_assert(index >= 0 && index < m_matrix.size());
|
||
|
return coeff(index);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
enum {
|
||
|
PacketSize = internal::packet_traits<Scalar>::size,
|
||
|
IsColMajor = !IsRowMajor,
|
||
|
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
|
||
|
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
|
||
|
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
|
||
|
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
|
||
|
ReversePacket = (Direction == BothDirections)
|
||
|
|| ((Direction == Vertical) && IsColMajor)
|
||
|
|| ((Direction == Horizontal) && IsRowMajor)
|
||
|
};
|
||
|
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
|
||
|
public:
|
||
|
|
||
|
inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
|
||
|
|
||
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
|
||
|
|
||
|
inline Index rows() const { return m_matrix.rows(); }
|
||
|
inline Index cols() const { return m_matrix.cols(); }
|
||
|
|
||
|
inline Index innerStride() const
|
||
|
{
|
||
|
return -m_matrix.innerStride();
|
||
|
}
|
||
|
|
||
|
inline Scalar& operator()(Index row, Index col)
|
||
|
{
|
||
|
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
|
||
|
return coeffRef(row, col);
|
||
|
}
|
||
|
|
||
|
inline Scalar& coeffRef(Index row, Index col)
|
||
|
{
|
||
|
return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
|
||
|
ReverseCol ? m_matrix.cols() - col - 1 : col);
|
||
|
}
|
||
|
|
||
|
inline CoeffReturnType coeff(Index row, Index col) const
|
||
|
{
|
||
|
return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
|
||
|
ReverseCol ? m_matrix.cols() - col - 1 : col);
|
||
|
}
|
||
|
|
||
|
inline CoeffReturnType coeff(Index index) const
|
||
|
{
|
||
|
return m_matrix.coeff(m_matrix.size() - index - 1);
|
||
|
}
|
||
|
|
||
|
inline Scalar& coeffRef(Index index)
|
||
|
{
|
||
|
return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
|
||
|
}
|
||
|
|
||
|
inline Scalar& operator()(Index index)
|
||
|
{
|
||
|
eigen_assert(index >= 0 && index < m_matrix.size());
|
||
|
return coeffRef(index);
|
||
|
}
|
||
|
|
||
|
template<int LoadMode>
|
||
|
inline const PacketScalar packet(Index row, Index col) const
|
||
|
{
|
||
|
return reverse_packet::run(m_matrix.template packet<LoadMode>(
|
||
|
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
|
||
|
ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
|
||
|
}
|
||
|
|
||
|
template<int LoadMode>
|
||
|
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||
|
{
|
||
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(
|
||
|
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
|
||
|
ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
|
||
|
reverse_packet::run(x));
|
||
|
}
|
||
|
|
||
|
template<int LoadMode>
|
||
|
inline const PacketScalar packet(Index index) const
|
||
|
{
|
||
|
return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
|
||
|
}
|
||
|
|
||
|
template<int LoadMode>
|
||
|
inline void writePacket(Index index, const PacketScalar& x)
|
||
|
{
|
||
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
|
||
|
}
|
||
|
|
||
|
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||
|
nestedExpression() const
|
||
|
{
|
||
|
return m_matrix;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
typename MatrixType::Nested m_matrix;
|
||
|
};
|
||
|
|
||
|
/** \returns an expression of the reverse of *this.
|
||
|
*
|
||
|
* Example: \include MatrixBase_reverse.cpp
|
||
|
* Output: \verbinclude MatrixBase_reverse.out
|
||
|
*
|
||
|
*/
|
||
|
template<typename Derived>
|
||
|
inline typename DenseBase<Derived>::ReverseReturnType
|
||
|
DenseBase<Derived>::reverse()
|
||
|
{
|
||
|
return derived();
|
||
|
}
|
||
|
|
||
|
/** This is the const version of reverse(). */
|
||
|
template<typename Derived>
|
||
|
inline const typename DenseBase<Derived>::ConstReverseReturnType
|
||
|
DenseBase<Derived>::reverse() const
|
||
|
{
|
||
|
return derived();
|
||
|
}
|
||
|
|
||
|
/** This is the "in place" version of reverse: it reverses \c *this.
|
||
|
*
|
||
|
* In most cases it is probably better to simply use the reversed expression
|
||
|
* of a matrix. However, when reversing the matrix data itself is really needed,
|
||
|
* then this "in-place" version is probably the right choice because it provides
|
||
|
* the following additional features:
|
||
|
* - less error prone: doing the same operation with .reverse() requires special care:
|
||
|
* \code m = m.reverse().eval(); \endcode
|
||
|
* - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
|
||
|
* - it allows future optimizations (cache friendliness, etc.)
|
||
|
*
|
||
|
* \sa reverse() */
|
||
|
template<typename Derived>
|
||
|
inline void DenseBase<Derived>::reverseInPlace()
|
||
|
{
|
||
|
derived() = derived().reverse().eval();
|
||
|
}
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_REVERSE_H
|