109 lines
4.6 KiB
C
109 lines
4.6 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
|||
|
// Copyright 2015 Google Inc. All rights reserved.
|
|||
|
// http://ceres-solver.org/
|
|||
|
//
|
|||
|
// Redistribution and use in source and binary forms, with or without
|
|||
|
// modification, are permitted provided that the following conditions are met:
|
|||
|
//
|
|||
|
// * Redistributions of source code must retain the above copyright notice,
|
|||
|
// this list of conditions and the following disclaimer.
|
|||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|||
|
// this list of conditions and the following disclaimer in the documentation
|
|||
|
// and/or other materials provided with the distribution.
|
|||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|||
|
// used to endorse or promote products derived from this software without
|
|||
|
// specific prior written permission.
|
|||
|
//
|
|||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|||
|
// POSSIBILITY OF SUCH DAMAGE.
|
|||
|
//
|
|||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|||
|
//
|
|||
|
// Limited memory positive definite approximation to the inverse
|
|||
|
// Hessian, using the LBFGS algorithm
|
|||
|
|
|||
|
#ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
|
|||
|
#define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
|
|||
|
|
|||
|
#include <list>
|
|||
|
|
|||
|
#include "ceres/internal/eigen.h"
|
|||
|
#include "ceres/linear_operator.h"
|
|||
|
|
|||
|
namespace ceres {
|
|||
|
namespace internal {
|
|||
|
|
|||
|
// LowRankInverseHessian is a positive definite approximation to the
|
|||
|
// Hessian using the limited memory variant of the
|
|||
|
// Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
|
|||
|
// approximating the Hessian.
|
|||
|
//
|
|||
|
// Other update rules like the Davidon-Fletcher-Powell (DFP) are
|
|||
|
// possible, but the BFGS rule is considered the best performing one.
|
|||
|
//
|
|||
|
// The limited memory variant was developed by Nocedal and further
|
|||
|
// enhanced with scaling rule by Byrd, Nocedal and Schanbel.
|
|||
|
//
|
|||
|
// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
|
|||
|
// Storage". Mathematics of Computation 35 (151): 773–782.
|
|||
|
//
|
|||
|
// Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
|
|||
|
// "Representations of Quasi-Newton Matrices and their use in
|
|||
|
// Limited Memory Methods". Mathematical Programming 63 (4):
|
|||
|
class LowRankInverseHessian : public LinearOperator {
|
|||
|
public:
|
|||
|
// num_parameters is the row/column size of the Hessian.
|
|||
|
// max_num_corrections is the rank of the Hessian approximation.
|
|||
|
// use_approximate_eigenvalue_scaling controls whether the initial
|
|||
|
// inverse Hessian used during Right/LeftMultiply() is scaled by
|
|||
|
// the approximate eigenvalue of the true inverse Hessian at the
|
|||
|
// current operating point.
|
|||
|
// The approximation uses:
|
|||
|
// 2 * max_num_corrections * num_parameters + max_num_corrections
|
|||
|
// doubles.
|
|||
|
LowRankInverseHessian(int num_parameters,
|
|||
|
int max_num_corrections,
|
|||
|
bool use_approximate_eigenvalue_scaling);
|
|||
|
virtual ~LowRankInverseHessian() {}
|
|||
|
|
|||
|
// Update the low rank approximation. delta_x is the change in the
|
|||
|
// domain of Hessian, and delta_gradient is the change in the
|
|||
|
// gradient. The update copies the delta_x and delta_gradient
|
|||
|
// vectors, and gets rid of the oldest delta_x and delta_gradient
|
|||
|
// vectors if the number of corrections is already equal to
|
|||
|
// max_num_corrections.
|
|||
|
bool Update(const Vector& delta_x, const Vector& delta_gradient);
|
|||
|
|
|||
|
// LinearOperator interface
|
|||
|
virtual void RightMultiply(const double* x, double* y) const;
|
|||
|
virtual void LeftMultiply(const double* x, double* y) const {
|
|||
|
RightMultiply(x, y);
|
|||
|
}
|
|||
|
virtual int num_rows() const { return num_parameters_; }
|
|||
|
virtual int num_cols() const { return num_parameters_; }
|
|||
|
|
|||
|
private:
|
|||
|
const int num_parameters_;
|
|||
|
const int max_num_corrections_;
|
|||
|
const bool use_approximate_eigenvalue_scaling_;
|
|||
|
double approximate_eigenvalue_scale_;
|
|||
|
ColMajorMatrix delta_x_history_;
|
|||
|
ColMajorMatrix delta_gradient_history_;
|
|||
|
Vector delta_x_dot_delta_gradient_;
|
|||
|
std::list<int> indices_;
|
|||
|
};
|
|||
|
|
|||
|
} // namespace internal
|
|||
|
} // namespace ceres
|
|||
|
|
|||
|
#endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
|