406 lines
16 KiB
C
406 lines
16 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
|
||
|
#ifndef CERES_PUBLIC_COVARIANCE_H_
|
||
|
#define CERES_PUBLIC_COVARIANCE_H_
|
||
|
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
#include "ceres/internal/port.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "ceres/internal/disable_warnings.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
|
||
|
class Problem;
|
||
|
|
||
|
namespace internal {
|
||
|
class CovarianceImpl;
|
||
|
} // namespace internal
|
||
|
|
||
|
// WARNING
|
||
|
// =======
|
||
|
// It is very easy to use this class incorrectly without understanding
|
||
|
// the underlying mathematics. Please read and understand the
|
||
|
// documentation completely before attempting to use this class.
|
||
|
//
|
||
|
//
|
||
|
// This class allows the user to evaluate the covariance for a
|
||
|
// non-linear least squares problem and provides random access to its
|
||
|
// blocks
|
||
|
//
|
||
|
// Background
|
||
|
// ==========
|
||
|
// One way to assess the quality of the solution returned by a
|
||
|
// non-linear least squares solve is to analyze the covariance of the
|
||
|
// solution.
|
||
|
//
|
||
|
// Let us consider the non-linear regression problem
|
||
|
//
|
||
|
// y = f(x) + N(0, I)
|
||
|
//
|
||
|
// i.e., the observation y is a random non-linear function of the
|
||
|
// independent variable x with mean f(x) and identity covariance. Then
|
||
|
// the maximum likelihood estimate of x given observations y is the
|
||
|
// solution to the non-linear least squares problem:
|
||
|
//
|
||
|
// x* = arg min_x |f(x)|^2
|
||
|
//
|
||
|
// And the covariance of x* is given by
|
||
|
//
|
||
|
// C(x*) = inverse[J'(x*)J(x*)]
|
||
|
//
|
||
|
// Here J(x*) is the Jacobian of f at x*. The above formula assumes
|
||
|
// that J(x*) has full column rank.
|
||
|
//
|
||
|
// If J(x*) is rank deficient, then the covariance matrix C(x*) is
|
||
|
// also rank deficient and is given by
|
||
|
//
|
||
|
// C(x*) = pseudoinverse[J'(x*)J(x*)]
|
||
|
//
|
||
|
// Note that in the above, we assumed that the covariance
|
||
|
// matrix for y was identity. This is an important assumption. If this
|
||
|
// is not the case and we have
|
||
|
//
|
||
|
// y = f(x) + N(0, S)
|
||
|
//
|
||
|
// Where S is a positive semi-definite matrix denoting the covariance
|
||
|
// of y, then the maximum likelihood problem to be solved is
|
||
|
//
|
||
|
// x* = arg min_x f'(x) inverse[S] f(x)
|
||
|
//
|
||
|
// and the corresponding covariance estimate of x* is given by
|
||
|
//
|
||
|
// C(x*) = inverse[J'(x*) inverse[S] J(x*)]
|
||
|
//
|
||
|
// So, if it is the case that the observations being fitted to have a
|
||
|
// covariance matrix not equal to identity, then it is the user's
|
||
|
// responsibility that the corresponding cost functions are correctly
|
||
|
// scaled, e.g. in the above case the cost function for this problem
|
||
|
// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
|
||
|
// is the inverse square root of the covariance matrix S.
|
||
|
//
|
||
|
// This class allows the user to evaluate the covariance for a
|
||
|
// non-linear least squares problem and provides random access to its
|
||
|
// blocks. The computation assumes that the CostFunctions compute
|
||
|
// residuals such that their covariance is identity.
|
||
|
//
|
||
|
// Since the computation of the covariance matrix requires computing
|
||
|
// the inverse of a potentially large matrix, this can involve a
|
||
|
// rather large amount of time and memory. However, it is usually the
|
||
|
// case that the user is only interested in a small part of the
|
||
|
// covariance matrix. Quite often just the block diagonal. This class
|
||
|
// allows the user to specify the parts of the covariance matrix that
|
||
|
// she is interested in and then uses this information to only compute
|
||
|
// and store those parts of the covariance matrix.
|
||
|
//
|
||
|
// Rank of the Jacobian
|
||
|
// --------------------
|
||
|
// As we noted above, if the jacobian is rank deficient, then the
|
||
|
// inverse of J'J is not defined and instead a pseudo inverse needs to
|
||
|
// be computed.
|
||
|
//
|
||
|
// The rank deficiency in J can be structural -- columns which are
|
||
|
// always known to be zero or numerical -- depending on the exact
|
||
|
// values in the Jacobian.
|
||
|
//
|
||
|
// Structural rank deficiency occurs when the problem contains
|
||
|
// parameter blocks that are constant. This class correctly handles
|
||
|
// structural rank deficiency like that.
|
||
|
//
|
||
|
// Numerical rank deficiency, where the rank of the matrix cannot be
|
||
|
// predicted by its sparsity structure and requires looking at its
|
||
|
// numerical values is more complicated. Here again there are two
|
||
|
// cases.
|
||
|
//
|
||
|
// a. The rank deficiency arises from overparameterization. e.g., a
|
||
|
// four dimensional quaternion used to parameterize SO(3), which is
|
||
|
// a three dimensional manifold. In cases like this, the user should
|
||
|
// use an appropriate LocalParameterization. Not only will this lead
|
||
|
// to better numerical behaviour of the Solver, it will also expose
|
||
|
// the rank deficiency to the Covariance object so that it can
|
||
|
// handle it correctly.
|
||
|
//
|
||
|
// b. More general numerical rank deficiency in the Jacobian
|
||
|
// requires the computation of the so called Singular Value
|
||
|
// Decomposition (SVD) of J'J. We do not know how to do this for
|
||
|
// large sparse matrices efficiently. For small and moderate sized
|
||
|
// problems this is done using dense linear algebra.
|
||
|
//
|
||
|
// Gauge Invariance
|
||
|
// ----------------
|
||
|
// In structure from motion (3D reconstruction) problems, the
|
||
|
// reconstruction is ambiguous upto a similarity transform. This is
|
||
|
// known as a Gauge Ambiguity. Handling Gauges correctly requires the
|
||
|
// use of SVD or custom inversion algorithms. For small problems the
|
||
|
// user can use the dense algorithm. For more details see
|
||
|
//
|
||
|
// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
|
||
|
// transformations for uncertainty description of geometric structure
|
||
|
// with indeterminacy. IEEE Transactions on Information Theory 47(5):
|
||
|
// 2017-2028 (2001)
|
||
|
//
|
||
|
// Example Usage
|
||
|
// =============
|
||
|
//
|
||
|
// double x[3];
|
||
|
// double y[2];
|
||
|
//
|
||
|
// Problem problem;
|
||
|
// problem.AddParameterBlock(x, 3);
|
||
|
// problem.AddParameterBlock(y, 2);
|
||
|
// <Build Problem>
|
||
|
// <Solve Problem>
|
||
|
//
|
||
|
// Covariance::Options options;
|
||
|
// Covariance covariance(options);
|
||
|
//
|
||
|
// std::vector<std::pair<const double*, const double*> > covariance_blocks;
|
||
|
// covariance_blocks.push_back(make_pair(x, x));
|
||
|
// covariance_blocks.push_back(make_pair(y, y));
|
||
|
// covariance_blocks.push_back(make_pair(x, y));
|
||
|
//
|
||
|
// CHECK(covariance.Compute(covariance_blocks, &problem));
|
||
|
//
|
||
|
// double covariance_xx[3 * 3];
|
||
|
// double covariance_yy[2 * 2];
|
||
|
// double covariance_xy[3 * 2];
|
||
|
// covariance.GetCovarianceBlock(x, x, covariance_xx)
|
||
|
// covariance.GetCovarianceBlock(y, y, covariance_yy)
|
||
|
// covariance.GetCovarianceBlock(x, y, covariance_xy)
|
||
|
//
|
||
|
class CERES_EXPORT Covariance {
|
||
|
public:
|
||
|
struct CERES_EXPORT Options {
|
||
|
Options()
|
||
|
#ifndef CERES_NO_SUITESPARSE
|
||
|
: algorithm_type(SUITE_SPARSE_QR),
|
||
|
#else
|
||
|
: algorithm_type(EIGEN_SPARSE_QR),
|
||
|
#endif
|
||
|
min_reciprocal_condition_number(1e-14),
|
||
|
null_space_rank(0),
|
||
|
num_threads(1),
|
||
|
apply_loss_function(true) {
|
||
|
}
|
||
|
|
||
|
// Ceres supports three different algorithms for covariance
|
||
|
// estimation, which represent different tradeoffs in speed,
|
||
|
// accuracy and reliability.
|
||
|
//
|
||
|
// 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
|
||
|
// computations. It computes the singular value decomposition
|
||
|
//
|
||
|
// U * S * V' = J
|
||
|
//
|
||
|
// and then uses it to compute the pseudo inverse of J'J as
|
||
|
//
|
||
|
// pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
|
||
|
//
|
||
|
// It is an accurate but slow method and should only be used
|
||
|
// for small to moderate sized problems. It can handle
|
||
|
// full-rank as well as rank deficient Jacobians.
|
||
|
//
|
||
|
// 2. EIGEN_SPARSE_QR uses the sparse QR factorization algorithm
|
||
|
// in Eigen to compute the decomposition
|
||
|
//
|
||
|
// Q * R = J
|
||
|
//
|
||
|
// [J'J]^-1 = [R*R']^-1
|
||
|
//
|
||
|
// It is a moderately fast algorithm for sparse matrices.
|
||
|
//
|
||
|
// 3. SUITE_SPARSE_QR uses the SuiteSparseQR sparse QR
|
||
|
// factorization algorithm. It uses dense linear algebra and is
|
||
|
// multi threaded, so for large sparse sparse matrices it is
|
||
|
// significantly faster than EIGEN_SPARSE_QR.
|
||
|
//
|
||
|
// Neither EIGEN_SPARSE_QR not SUITE_SPARSE_QR are capable of
|
||
|
// computing the covariance if the Jacobian is rank deficient.
|
||
|
CovarianceAlgorithmType algorithm_type;
|
||
|
|
||
|
// If the Jacobian matrix is near singular, then inverting J'J
|
||
|
// will result in unreliable results, e.g, if
|
||
|
//
|
||
|
// J = [1.0 1.0 ]
|
||
|
// [1.0 1.0000001 ]
|
||
|
//
|
||
|
// which is essentially a rank deficient matrix, we have
|
||
|
//
|
||
|
// inv(J'J) = [ 2.0471e+14 -2.0471e+14]
|
||
|
// [-2.0471e+14 2.0471e+14]
|
||
|
//
|
||
|
// This is not a useful result. Therefore, by default
|
||
|
// Covariance::Compute will return false if a rank deficient
|
||
|
// Jacobian is encountered. How rank deficiency is detected
|
||
|
// depends on the algorithm being used.
|
||
|
//
|
||
|
// 1. DENSE_SVD
|
||
|
//
|
||
|
// min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
|
||
|
//
|
||
|
// where min_sigma and max_sigma are the minimum and maxiumum
|
||
|
// singular values of J respectively.
|
||
|
//
|
||
|
// 2. SUITE_SPARSE_QR and EIGEN_SPARSE_QR
|
||
|
//
|
||
|
// rank(J) < num_col(J)
|
||
|
//
|
||
|
// Here rank(J) is the estimate of the rank of J returned by the
|
||
|
// sparse QR factorization algorithm. It is a fairly reliable
|
||
|
// indication of rank deficiency.
|
||
|
//
|
||
|
double min_reciprocal_condition_number;
|
||
|
|
||
|
// When using DENSE_SVD, the user has more control in dealing with
|
||
|
// singular and near singular covariance matrices.
|
||
|
//
|
||
|
// As mentioned above, when the covariance matrix is near
|
||
|
// singular, instead of computing the inverse of J'J, the
|
||
|
// Moore-Penrose pseudoinverse of J'J should be computed.
|
||
|
//
|
||
|
// If J'J has the eigen decomposition (lambda_i, e_i), where
|
||
|
// lambda_i is the i^th eigenvalue and e_i is the corresponding
|
||
|
// eigenvector, then the inverse of J'J is
|
||
|
//
|
||
|
// inverse[J'J] = sum_i e_i e_i' / lambda_i
|
||
|
//
|
||
|
// and computing the pseudo inverse involves dropping terms from
|
||
|
// this sum that correspond to small eigenvalues.
|
||
|
//
|
||
|
// How terms are dropped is controlled by
|
||
|
// min_reciprocal_condition_number and null_space_rank.
|
||
|
//
|
||
|
// If null_space_rank is non-negative, then the smallest
|
||
|
// null_space_rank eigenvalue/eigenvectors are dropped
|
||
|
// irrespective of the magnitude of lambda_i. If the ratio of the
|
||
|
// smallest non-zero eigenvalue to the largest eigenvalue in the
|
||
|
// truncated matrix is still below
|
||
|
// min_reciprocal_condition_number, then the Covariance::Compute()
|
||
|
// will fail and return false.
|
||
|
//
|
||
|
// Setting null_space_rank = -1 drops all terms for which
|
||
|
//
|
||
|
// lambda_i / lambda_max < min_reciprocal_condition_number.
|
||
|
//
|
||
|
// This option has no effect on the SUITE_SPARSE_QR and
|
||
|
// EIGEN_SPARSE_QR algorithms.
|
||
|
int null_space_rank;
|
||
|
|
||
|
int num_threads;
|
||
|
|
||
|
// Even though the residual blocks in the problem may contain loss
|
||
|
// functions, setting apply_loss_function to false will turn off
|
||
|
// the application of the loss function to the output of the cost
|
||
|
// function and in turn its effect on the covariance.
|
||
|
//
|
||
|
// TODO(sameergaarwal): Expand this based on Jim's experiments.
|
||
|
bool apply_loss_function;
|
||
|
};
|
||
|
|
||
|
explicit Covariance(const Options& options);
|
||
|
~Covariance();
|
||
|
|
||
|
// Compute a part of the covariance matrix.
|
||
|
//
|
||
|
// The vector covariance_blocks, indexes into the covariance matrix
|
||
|
// block-wise using pairs of parameter blocks. This allows the
|
||
|
// covariance estimation algorithm to only compute and store these
|
||
|
// blocks.
|
||
|
//
|
||
|
// Since the covariance matrix is symmetric, if the user passes
|
||
|
// (block1, block2), then GetCovarianceBlock can be called with
|
||
|
// block1, block2 as well as block2, block1.
|
||
|
//
|
||
|
// covariance_blocks cannot contain duplicates. Bad things will
|
||
|
// happen if they do.
|
||
|
//
|
||
|
// Note that the list of covariance_blocks is only used to determine
|
||
|
// what parts of the covariance matrix are computed. The full
|
||
|
// Jacobian is used to do the computation, i.e. they do not have an
|
||
|
// impact on what part of the Jacobian is used for computation.
|
||
|
//
|
||
|
// The return value indicates the success or failure of the
|
||
|
// covariance computation. Please see the documentation for
|
||
|
// Covariance::Options for more on the conditions under which this
|
||
|
// function returns false.
|
||
|
bool Compute(
|
||
|
const std::vector<std::pair<const double*,
|
||
|
const double*> >& covariance_blocks,
|
||
|
Problem* problem);
|
||
|
|
||
|
// Return the block of the cross-covariance matrix corresponding to
|
||
|
// parameter_block1 and parameter_block2.
|
||
|
//
|
||
|
// Compute must be called before the first call to
|
||
|
// GetCovarianceBlock and the pair <parameter_block1,
|
||
|
// parameter_block2> OR the pair <parameter_block2,
|
||
|
// parameter_block1> must have been present in the vector
|
||
|
// covariance_blocks when Compute was called. Otherwise
|
||
|
// GetCovarianceBlock will return false.
|
||
|
//
|
||
|
// covariance_block must point to a memory location that can store a
|
||
|
// parameter_block1_size x parameter_block2_size matrix. The
|
||
|
// returned covariance will be a row-major matrix.
|
||
|
bool GetCovarianceBlock(const double* parameter_block1,
|
||
|
const double* parameter_block2,
|
||
|
double* covariance_block) const;
|
||
|
|
||
|
// Return the block of the cross-covariance matrix corresponding to
|
||
|
// parameter_block1 and parameter_block2.
|
||
|
// Returns cross-covariance in the tangent space if a local
|
||
|
// parameterization is associated with either parameter block;
|
||
|
// else returns cross-covariance in the ambient space.
|
||
|
//
|
||
|
// Compute must be called before the first call to
|
||
|
// GetCovarianceBlock and the pair <parameter_block1,
|
||
|
// parameter_block2> OR the pair <parameter_block2,
|
||
|
// parameter_block1> must have been present in the vector
|
||
|
// covariance_blocks when Compute was called. Otherwise
|
||
|
// GetCovarianceBlock will return false.
|
||
|
//
|
||
|
// covariance_block must point to a memory location that can store a
|
||
|
// parameter_block1_local_size x parameter_block2_local_size matrix. The
|
||
|
// returned covariance will be a row-major matrix.
|
||
|
bool GetCovarianceBlockInTangentSpace(const double* parameter_block1,
|
||
|
const double* parameter_block2,
|
||
|
double* covariance_block) const;
|
||
|
|
||
|
private:
|
||
|
internal::scoped_ptr<internal::CovarianceImpl> impl_;
|
||
|
};
|
||
|
|
||
|
} // namespace ceres
|
||
|
|
||
|
#include "ceres/internal/reenable_warnings.h"
|
||
|
|
||
|
#endif // CERES_PUBLIC_COVARIANCE_H_
|