447 lines
18 KiB
C
447 lines
18 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
// mierle@gmail.com (Keir Mierle)
|
||
|
// tbennun@gmail.com (Tal Ben-Nun)
|
||
|
//
|
||
|
// Finite differencing routines used by NumericDiffCostFunction.
|
||
|
|
||
|
#ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
|
||
|
#define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
|
||
|
|
||
|
#include <cstring>
|
||
|
|
||
|
#include "Eigen/Dense"
|
||
|
#include "Eigen/StdVector"
|
||
|
#include "ceres/cost_function.h"
|
||
|
#include "ceres/internal/fixed_array.h"
|
||
|
#include "ceres/internal/scoped_ptr.h"
|
||
|
#include "ceres/internal/variadic_evaluate.h"
|
||
|
#include "ceres/numeric_diff_options.h"
|
||
|
#include "ceres/types.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
// Helper templates that allow evaluation of a variadic functor or a
|
||
|
// CostFunction object.
|
||
|
template <typename CostFunctor,
|
||
|
int N0, int N1, int N2, int N3, int N4,
|
||
|
int N5, int N6, int N7, int N8, int N9 >
|
||
|
bool EvaluateImpl(const CostFunctor* functor,
|
||
|
double const* const* parameters,
|
||
|
double* residuals,
|
||
|
const void* /* NOT USED */) {
|
||
|
return VariadicEvaluate<CostFunctor,
|
||
|
double,
|
||
|
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
|
||
|
*functor,
|
||
|
parameters,
|
||
|
residuals);
|
||
|
}
|
||
|
|
||
|
template <typename CostFunctor,
|
||
|
int N0, int N1, int N2, int N3, int N4,
|
||
|
int N5, int N6, int N7, int N8, int N9 >
|
||
|
bool EvaluateImpl(const CostFunctor* functor,
|
||
|
double const* const* parameters,
|
||
|
double* residuals,
|
||
|
const CostFunction* /* NOT USED */) {
|
||
|
return functor->Evaluate(parameters, residuals, NULL);
|
||
|
}
|
||
|
|
||
|
// This is split from the main class because C++ doesn't allow partial template
|
||
|
// specializations for member functions. The alternative is to repeat the main
|
||
|
// class for differing numbers of parameters, which is also unfortunate.
|
||
|
template <typename CostFunctor,
|
||
|
NumericDiffMethodType kMethod,
|
||
|
int kNumResiduals,
|
||
|
int N0, int N1, int N2, int N3, int N4,
|
||
|
int N5, int N6, int N7, int N8, int N9,
|
||
|
int kParameterBlock,
|
||
|
int kParameterBlockSize>
|
||
|
struct NumericDiff {
|
||
|
// Mutates parameters but must restore them before return.
|
||
|
static bool EvaluateJacobianForParameterBlock(
|
||
|
const CostFunctor* functor,
|
||
|
const double* residuals_at_eval_point,
|
||
|
const NumericDiffOptions& options,
|
||
|
int num_residuals,
|
||
|
int parameter_block_index,
|
||
|
int parameter_block_size,
|
||
|
double **parameters,
|
||
|
double *jacobian) {
|
||
|
using Eigen::Map;
|
||
|
using Eigen::Matrix;
|
||
|
using Eigen::RowMajor;
|
||
|
using Eigen::ColMajor;
|
||
|
|
||
|
const int num_residuals_internal =
|
||
|
(kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals);
|
||
|
const int parameter_block_index_internal =
|
||
|
(kParameterBlock != ceres::DYNAMIC ? kParameterBlock :
|
||
|
parameter_block_index);
|
||
|
const int parameter_block_size_internal =
|
||
|
(kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize :
|
||
|
parameter_block_size);
|
||
|
|
||
|
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
|
||
|
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
|
||
|
|
||
|
// The convoluted reasoning for choosing the Row/Column major
|
||
|
// ordering of the matrix is an artifact of the restrictions in
|
||
|
// Eigen that prevent it from creating RowMajor matrices with a
|
||
|
// single column. In these cases, we ask for a ColMajor matrix.
|
||
|
typedef Matrix<double,
|
||
|
kNumResiduals,
|
||
|
kParameterBlockSize,
|
||
|
(kParameterBlockSize == 1) ? ColMajor : RowMajor>
|
||
|
JacobianMatrix;
|
||
|
|
||
|
Map<JacobianMatrix> parameter_jacobian(jacobian,
|
||
|
num_residuals_internal,
|
||
|
parameter_block_size_internal);
|
||
|
|
||
|
Map<ParameterVector> x_plus_delta(
|
||
|
parameters[parameter_block_index_internal],
|
||
|
parameter_block_size_internal);
|
||
|
ParameterVector x(x_plus_delta);
|
||
|
ParameterVector step_size = x.array().abs() *
|
||
|
((kMethod == RIDDERS) ? options.ridders_relative_initial_step_size :
|
||
|
options.relative_step_size);
|
||
|
|
||
|
// It is not a good idea to make the step size arbitrarily
|
||
|
// small. This will lead to problems with round off and numerical
|
||
|
// instability when dividing by the step size. The general
|
||
|
// recommendation is to not go down below sqrt(epsilon).
|
||
|
double min_step_size = std::sqrt(std::numeric_limits<double>::epsilon());
|
||
|
|
||
|
// For Ridders' method, the initial step size is required to be large,
|
||
|
// thus ridders_relative_initial_step_size is used.
|
||
|
if (kMethod == RIDDERS) {
|
||
|
min_step_size = std::max(min_step_size,
|
||
|
options.ridders_relative_initial_step_size);
|
||
|
}
|
||
|
|
||
|
// For each parameter in the parameter block, use finite differences to
|
||
|
// compute the derivative for that parameter.
|
||
|
FixedArray<double> temp_residual_array(num_residuals_internal);
|
||
|
FixedArray<double> residual_array(num_residuals_internal);
|
||
|
Map<ResidualVector> residuals(residual_array.get(),
|
||
|
num_residuals_internal);
|
||
|
|
||
|
for (int j = 0; j < parameter_block_size_internal; ++j) {
|
||
|
const double delta = std::max(min_step_size, step_size(j));
|
||
|
|
||
|
if (kMethod == RIDDERS) {
|
||
|
if (!EvaluateRiddersJacobianColumn(functor, j, delta,
|
||
|
options,
|
||
|
num_residuals_internal,
|
||
|
parameter_block_size_internal,
|
||
|
x.data(),
|
||
|
residuals_at_eval_point,
|
||
|
parameters,
|
||
|
x_plus_delta.data(),
|
||
|
temp_residual_array.get(),
|
||
|
residual_array.get())) {
|
||
|
return false;
|
||
|
}
|
||
|
} else {
|
||
|
if (!EvaluateJacobianColumn(functor, j, delta,
|
||
|
num_residuals_internal,
|
||
|
parameter_block_size_internal,
|
||
|
x.data(),
|
||
|
residuals_at_eval_point,
|
||
|
parameters,
|
||
|
x_plus_delta.data(),
|
||
|
temp_residual_array.get(),
|
||
|
residual_array.get())) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
parameter_jacobian.col(j).matrix() = residuals;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool EvaluateJacobianColumn(const CostFunctor* functor,
|
||
|
int parameter_index,
|
||
|
double delta,
|
||
|
int num_residuals,
|
||
|
int parameter_block_size,
|
||
|
const double* x_ptr,
|
||
|
const double* residuals_at_eval_point,
|
||
|
double** parameters,
|
||
|
double* x_plus_delta_ptr,
|
||
|
double* temp_residuals_ptr,
|
||
|
double* residuals_ptr) {
|
||
|
using Eigen::Map;
|
||
|
using Eigen::Matrix;
|
||
|
|
||
|
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
|
||
|
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
|
||
|
|
||
|
Map<const ParameterVector> x(x_ptr, parameter_block_size);
|
||
|
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
|
||
|
parameter_block_size);
|
||
|
|
||
|
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
|
||
|
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
|
||
|
|
||
|
// Mutate 1 element at a time and then restore.
|
||
|
x_plus_delta(parameter_index) = x(parameter_index) + delta;
|
||
|
|
||
|
if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
|
||
|
functor, parameters, residuals.data(), functor)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Compute this column of the jacobian in 3 steps:
|
||
|
// 1. Store residuals for the forward part.
|
||
|
// 2. Subtract residuals for the backward (or 0) part.
|
||
|
// 3. Divide out the run.
|
||
|
double one_over_delta = 1.0 / delta;
|
||
|
if (kMethod == CENTRAL || kMethod == RIDDERS) {
|
||
|
// Compute the function on the other side of x(parameter_index).
|
||
|
x_plus_delta(parameter_index) = x(parameter_index) - delta;
|
||
|
|
||
|
if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
|
||
|
functor, parameters, temp_residuals.data(), functor)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
residuals -= temp_residuals;
|
||
|
one_over_delta /= 2;
|
||
|
} else {
|
||
|
// Forward difference only; reuse existing residuals evaluation.
|
||
|
residuals -=
|
||
|
Map<const ResidualVector>(residuals_at_eval_point,
|
||
|
num_residuals);
|
||
|
}
|
||
|
|
||
|
// Restore x_plus_delta.
|
||
|
x_plus_delta(parameter_index) = x(parameter_index);
|
||
|
|
||
|
// Divide out the run to get slope.
|
||
|
residuals *= one_over_delta;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// This numeric difference implementation uses adaptive differentiation
|
||
|
// on the parameters to obtain the Jacobian matrix. The adaptive algorithm
|
||
|
// is based on Ridders' method for adaptive differentiation, which creates
|
||
|
// a Romberg tableau from varying step sizes and extrapolates the
|
||
|
// intermediate results to obtain the current computational error.
|
||
|
//
|
||
|
// References:
|
||
|
// C.J.F. Ridders, Accurate computation of F'(x) and F'(x) F"(x), Advances
|
||
|
// in Engineering Software (1978), Volume 4, Issue 2, April 1982,
|
||
|
// Pages 75-76, ISSN 0141-1195,
|
||
|
// http://dx.doi.org/10.1016/S0141-1195(82)80057-0.
|
||
|
static bool EvaluateRiddersJacobianColumn(
|
||
|
const CostFunctor* functor,
|
||
|
int parameter_index,
|
||
|
double delta,
|
||
|
const NumericDiffOptions& options,
|
||
|
int num_residuals,
|
||
|
int parameter_block_size,
|
||
|
const double* x_ptr,
|
||
|
const double* residuals_at_eval_point,
|
||
|
double** parameters,
|
||
|
double* x_plus_delta_ptr,
|
||
|
double* temp_residuals_ptr,
|
||
|
double* residuals_ptr) {
|
||
|
using Eigen::Map;
|
||
|
using Eigen::Matrix;
|
||
|
using Eigen::aligned_allocator;
|
||
|
|
||
|
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
|
||
|
typedef Matrix<double, kNumResiduals, Eigen::Dynamic> ResidualCandidateMatrix;
|
||
|
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
|
||
|
|
||
|
Map<const ParameterVector> x(x_ptr, parameter_block_size);
|
||
|
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
|
||
|
parameter_block_size);
|
||
|
|
||
|
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
|
||
|
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
|
||
|
|
||
|
// In order for the algorithm to converge, the step size should be
|
||
|
// initialized to a value that is large enough to produce a significant
|
||
|
// change in the function.
|
||
|
// As the derivative is estimated, the step size decreases.
|
||
|
// By default, the step sizes are chosen so that the middle column
|
||
|
// of the Romberg tableau uses the input delta.
|
||
|
double current_step_size = delta *
|
||
|
pow(options.ridders_step_shrink_factor,
|
||
|
options.max_num_ridders_extrapolations / 2);
|
||
|
|
||
|
// Double-buffering temporary differential candidate vectors
|
||
|
// from previous step size.
|
||
|
ResidualCandidateMatrix stepsize_candidates_a(
|
||
|
num_residuals,
|
||
|
options.max_num_ridders_extrapolations);
|
||
|
ResidualCandidateMatrix stepsize_candidates_b(
|
||
|
num_residuals,
|
||
|
options.max_num_ridders_extrapolations);
|
||
|
ResidualCandidateMatrix* current_candidates = &stepsize_candidates_a;
|
||
|
ResidualCandidateMatrix* previous_candidates = &stepsize_candidates_b;
|
||
|
|
||
|
// Represents the computational error of the derivative. This variable is
|
||
|
// initially set to a large value, and is set to the difference between
|
||
|
// current and previous finite difference extrapolations.
|
||
|
// norm_error is supposed to decrease as the finite difference tableau
|
||
|
// generation progresses, serving both as an estimate for differentiation
|
||
|
// error and as a measure of differentiation numerical stability.
|
||
|
double norm_error = std::numeric_limits<double>::max();
|
||
|
|
||
|
// Loop over decreasing step sizes until:
|
||
|
// 1. Error is smaller than a given value (ridders_epsilon),
|
||
|
// 2. Maximal order of extrapolation reached, or
|
||
|
// 3. Extrapolation becomes numerically unstable.
|
||
|
for (int i = 0; i < options.max_num_ridders_extrapolations; ++i) {
|
||
|
// Compute the numerical derivative at this step size.
|
||
|
if (!EvaluateJacobianColumn(functor, parameter_index, current_step_size,
|
||
|
num_residuals,
|
||
|
parameter_block_size,
|
||
|
x.data(),
|
||
|
residuals_at_eval_point,
|
||
|
parameters,
|
||
|
x_plus_delta.data(),
|
||
|
temp_residuals.data(),
|
||
|
current_candidates->col(0).data())) {
|
||
|
// Something went wrong; bail.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Store initial results.
|
||
|
if (i == 0) {
|
||
|
residuals = current_candidates->col(0);
|
||
|
}
|
||
|
|
||
|
// Shrink differentiation step size.
|
||
|
current_step_size /= options.ridders_step_shrink_factor;
|
||
|
|
||
|
// Extrapolation factor for Richardson acceleration method (see below).
|
||
|
double richardson_factor = options.ridders_step_shrink_factor *
|
||
|
options.ridders_step_shrink_factor;
|
||
|
for (int k = 1; k <= i; ++k) {
|
||
|
// Extrapolate the various orders of finite differences using
|
||
|
// the Richardson acceleration method.
|
||
|
current_candidates->col(k) =
|
||
|
(richardson_factor * current_candidates->col(k - 1) -
|
||
|
previous_candidates->col(k - 1)) / (richardson_factor - 1.0);
|
||
|
|
||
|
richardson_factor *= options.ridders_step_shrink_factor *
|
||
|
options.ridders_step_shrink_factor;
|
||
|
|
||
|
// Compute the difference between the previous value and the current.
|
||
|
double candidate_error = std::max(
|
||
|
(current_candidates->col(k) -
|
||
|
current_candidates->col(k - 1)).norm(),
|
||
|
(current_candidates->col(k) -
|
||
|
previous_candidates->col(k - 1)).norm());
|
||
|
|
||
|
// If the error has decreased, update results.
|
||
|
if (candidate_error <= norm_error) {
|
||
|
norm_error = candidate_error;
|
||
|
residuals = current_candidates->col(k);
|
||
|
|
||
|
// If the error is small enough, stop.
|
||
|
if (norm_error < options.ridders_epsilon) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// After breaking out of the inner loop, declare convergence.
|
||
|
if (norm_error < options.ridders_epsilon) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Check to see if the current gradient estimate is numerically unstable.
|
||
|
// If so, bail out and return the last stable result.
|
||
|
if (i > 0) {
|
||
|
double tableau_error = (current_candidates->col(i) -
|
||
|
previous_candidates->col(i - 1)).norm();
|
||
|
|
||
|
// Compare current error to the chosen candidate's error.
|
||
|
if (tableau_error >= 2 * norm_error) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::swap(current_candidates, previous_candidates);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename CostFunctor,
|
||
|
NumericDiffMethodType kMethod,
|
||
|
int kNumResiduals,
|
||
|
int N0, int N1, int N2, int N3, int N4,
|
||
|
int N5, int N6, int N7, int N8, int N9,
|
||
|
int kParameterBlock>
|
||
|
struct NumericDiff<CostFunctor, kMethod, kNumResiduals,
|
||
|
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,
|
||
|
kParameterBlock, 0> {
|
||
|
// Mutates parameters but must restore them before return.
|
||
|
static bool EvaluateJacobianForParameterBlock(
|
||
|
const CostFunctor* functor,
|
||
|
const double* residuals_at_eval_point,
|
||
|
const NumericDiffOptions& options,
|
||
|
const int num_residuals,
|
||
|
const int parameter_block_index,
|
||
|
const int parameter_block_size,
|
||
|
double **parameters,
|
||
|
double *jacobian) {
|
||
|
// Silence unused parameter compiler warnings.
|
||
|
(void)functor;
|
||
|
(void)residuals_at_eval_point;
|
||
|
(void)options;
|
||
|
(void)num_residuals;
|
||
|
(void)parameter_block_index;
|
||
|
(void)parameter_block_size;
|
||
|
(void)parameters;
|
||
|
(void)jacobian;
|
||
|
LOG(FATAL) << "Control should never reach here.";
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
|