1029 lines
43 KiB
C
1029 lines
43 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
|||
|
// Copyright 2015 Google Inc. All rights reserved.
|
|||
|
// http://ceres-solver.org/
|
|||
|
//
|
|||
|
// Redistribution and use in source and binary forms, with or without
|
|||
|
// modification, are permitted provided that the following conditions are met:
|
|||
|
//
|
|||
|
// * Redistributions of source code must retain the above copyright notice,
|
|||
|
// this list of conditions and the following disclaimer.
|
|||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|||
|
// this list of conditions and the following disclaimer in the documentation
|
|||
|
// and/or other materials provided with the distribution.
|
|||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|||
|
// used to endorse or promote products derived from this software without
|
|||
|
// specific prior written permission.
|
|||
|
//
|
|||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|||
|
// POSSIBILITY OF SUCH DAMAGE.
|
|||
|
//
|
|||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|||
|
|
|||
|
#ifndef CERES_PUBLIC_SOLVER_H_
|
|||
|
#define CERES_PUBLIC_SOLVER_H_
|
|||
|
|
|||
|
#include <cmath>
|
|||
|
#include <string>
|
|||
|
#include <vector>
|
|||
|
#include "ceres/crs_matrix.h"
|
|||
|
#include "ceres/internal/macros.h"
|
|||
|
#include "ceres/internal/port.h"
|
|||
|
#include "ceres/iteration_callback.h"
|
|||
|
#include "ceres/ordered_groups.h"
|
|||
|
#include "ceres/types.h"
|
|||
|
#include "ceres/internal/disable_warnings.h"
|
|||
|
|
|||
|
namespace ceres {
|
|||
|
|
|||
|
class Problem;
|
|||
|
|
|||
|
// Interface for non-linear least squares solvers.
|
|||
|
class CERES_EXPORT Solver {
|
|||
|
public:
|
|||
|
virtual ~Solver();
|
|||
|
|
|||
|
// The options structure contains, not surprisingly, options that control how
|
|||
|
// the solver operates. The defaults should be suitable for a wide range of
|
|||
|
// problems; however, better performance is often obtainable with tweaking.
|
|||
|
//
|
|||
|
// The constants are defined inside types.h
|
|||
|
struct CERES_EXPORT Options {
|
|||
|
// Default constructor that sets up a generic sparse problem.
|
|||
|
Options() {
|
|||
|
minimizer_type = TRUST_REGION;
|
|||
|
line_search_direction_type = LBFGS;
|
|||
|
line_search_type = WOLFE;
|
|||
|
nonlinear_conjugate_gradient_type = FLETCHER_REEVES;
|
|||
|
max_lbfgs_rank = 20;
|
|||
|
use_approximate_eigenvalue_bfgs_scaling = false;
|
|||
|
line_search_interpolation_type = CUBIC;
|
|||
|
min_line_search_step_size = 1e-9;
|
|||
|
line_search_sufficient_function_decrease = 1e-4;
|
|||
|
max_line_search_step_contraction = 1e-3;
|
|||
|
min_line_search_step_contraction = 0.6;
|
|||
|
max_num_line_search_step_size_iterations = 20;
|
|||
|
max_num_line_search_direction_restarts = 5;
|
|||
|
line_search_sufficient_curvature_decrease = 0.9;
|
|||
|
max_line_search_step_expansion = 10.0;
|
|||
|
trust_region_strategy_type = LEVENBERG_MARQUARDT;
|
|||
|
dogleg_type = TRADITIONAL_DOGLEG;
|
|||
|
use_nonmonotonic_steps = false;
|
|||
|
max_consecutive_nonmonotonic_steps = 5;
|
|||
|
max_num_iterations = 50;
|
|||
|
max_solver_time_in_seconds = 1e9;
|
|||
|
num_threads = 1;
|
|||
|
initial_trust_region_radius = 1e4;
|
|||
|
max_trust_region_radius = 1e16;
|
|||
|
min_trust_region_radius = 1e-32;
|
|||
|
min_relative_decrease = 1e-3;
|
|||
|
min_lm_diagonal = 1e-6;
|
|||
|
max_lm_diagonal = 1e32;
|
|||
|
max_num_consecutive_invalid_steps = 5;
|
|||
|
function_tolerance = 1e-6;
|
|||
|
gradient_tolerance = 1e-10;
|
|||
|
parameter_tolerance = 1e-8;
|
|||
|
|
|||
|
#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) && !defined(CERES_ENABLE_LGPL_CODE) // NOLINT
|
|||
|
linear_solver_type = DENSE_QR;
|
|||
|
#else
|
|||
|
linear_solver_type = SPARSE_NORMAL_CHOLESKY;
|
|||
|
#endif
|
|||
|
|
|||
|
preconditioner_type = JACOBI;
|
|||
|
visibility_clustering_type = CANONICAL_VIEWS;
|
|||
|
dense_linear_algebra_library_type = EIGEN;
|
|||
|
|
|||
|
// Choose a default sparse linear algebra library in the order:
|
|||
|
//
|
|||
|
// SUITE_SPARSE > CX_SPARSE > EIGEN_SPARSE > NO_SPARSE
|
|||
|
sparse_linear_algebra_library_type = NO_SPARSE;
|
|||
|
#if !defined(CERES_NO_SUITESPARSE)
|
|||
|
sparse_linear_algebra_library_type = SUITE_SPARSE;
|
|||
|
#else
|
|||
|
#if !defined(CERES_NO_CXSPARSE)
|
|||
|
sparse_linear_algebra_library_type = CX_SPARSE;
|
|||
|
#else
|
|||
|
#if defined(CERES_USE_EIGEN_SPARSE)
|
|||
|
sparse_linear_algebra_library_type = EIGEN_SPARSE;
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
|
|||
|
num_linear_solver_threads = 1;
|
|||
|
use_explicit_schur_complement = false;
|
|||
|
use_postordering = false;
|
|||
|
dynamic_sparsity = false;
|
|||
|
min_linear_solver_iterations = 0;
|
|||
|
max_linear_solver_iterations = 500;
|
|||
|
eta = 1e-1;
|
|||
|
jacobi_scaling = true;
|
|||
|
use_inner_iterations = false;
|
|||
|
inner_iteration_tolerance = 1e-3;
|
|||
|
logging_type = PER_MINIMIZER_ITERATION;
|
|||
|
minimizer_progress_to_stdout = false;
|
|||
|
trust_region_problem_dump_directory = "/tmp";
|
|||
|
trust_region_problem_dump_format_type = TEXTFILE;
|
|||
|
check_gradients = false;
|
|||
|
gradient_check_relative_precision = 1e-8;
|
|||
|
numeric_derivative_relative_step_size = 1e-6;
|
|||
|
update_state_every_iteration = false;
|
|||
|
}
|
|||
|
|
|||
|
// Returns true if the options struct has a valid
|
|||
|
// configuration. Returns false otherwise, and fills in *error
|
|||
|
// with a message describing the problem.
|
|||
|
bool IsValid(std::string* error) const;
|
|||
|
|
|||
|
// Minimizer options ----------------------------------------
|
|||
|
|
|||
|
// Ceres supports the two major families of optimization strategies -
|
|||
|
// Trust Region and Line Search.
|
|||
|
//
|
|||
|
// 1. The line search approach first finds a descent direction
|
|||
|
// along which the objective function will be reduced and then
|
|||
|
// computes a step size that decides how far should move along
|
|||
|
// that direction. The descent direction can be computed by
|
|||
|
// various methods, such as gradient descent, Newton's method and
|
|||
|
// Quasi-Newton method. The step size can be determined either
|
|||
|
// exactly or inexactly.
|
|||
|
//
|
|||
|
// 2. The trust region approach approximates the objective
|
|||
|
// function using using a model function (often a quadratic) over
|
|||
|
// a subset of the search space known as the trust region. If the
|
|||
|
// model function succeeds in minimizing the true objective
|
|||
|
// function the trust region is expanded; conversely, otherwise it
|
|||
|
// is contracted and the model optimization problem is solved
|
|||
|
// again.
|
|||
|
//
|
|||
|
// Trust region methods are in some sense dual to line search methods:
|
|||
|
// trust region methods first choose a step size (the size of the
|
|||
|
// trust region) and then a step direction while line search methods
|
|||
|
// first choose a step direction and then a step size.
|
|||
|
MinimizerType minimizer_type;
|
|||
|
|
|||
|
LineSearchDirectionType line_search_direction_type;
|
|||
|
LineSearchType line_search_type;
|
|||
|
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
|
|||
|
|
|||
|
// The LBFGS hessian approximation is a low rank approximation to
|
|||
|
// the inverse of the Hessian matrix. The rank of the
|
|||
|
// approximation determines (linearly) the space and time
|
|||
|
// complexity of using the approximation. Higher the rank, the
|
|||
|
// better is the quality of the approximation. The increase in
|
|||
|
// quality is however is bounded for a number of reasons.
|
|||
|
//
|
|||
|
// 1. The method only uses secant information and not actual
|
|||
|
// derivatives.
|
|||
|
//
|
|||
|
// 2. The Hessian approximation is constrained to be positive
|
|||
|
// definite.
|
|||
|
//
|
|||
|
// So increasing this rank to a large number will cost time and
|
|||
|
// space complexity without the corresponding increase in solution
|
|||
|
// quality. There are no hard and fast rules for choosing the
|
|||
|
// maximum rank. The best choice usually requires some problem
|
|||
|
// specific experimentation.
|
|||
|
//
|
|||
|
// For more theoretical and implementation details of the LBFGS
|
|||
|
// method, please see:
|
|||
|
//
|
|||
|
// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with
|
|||
|
// Limited Storage". Mathematics of Computation 35 (151): 773–782.
|
|||
|
int max_lbfgs_rank;
|
|||
|
|
|||
|
// As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
|
|||
|
// the initial inverse Hessian approximation is taken to be the Identity.
|
|||
|
// However, Oren showed that using instead I * \gamma, where \gamma is
|
|||
|
// chosen to approximate an eigenvalue of the true inverse Hessian can
|
|||
|
// result in improved convergence in a wide variety of cases. Setting
|
|||
|
// use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.
|
|||
|
//
|
|||
|
// It is important to note that approximate eigenvalue scaling does not
|
|||
|
// always improve convergence, and that it can in fact significantly degrade
|
|||
|
// performance for certain classes of problem, which is why it is disabled
|
|||
|
// by default. In particular it can degrade performance when the
|
|||
|
// sensitivity of the problem to different parameters varies significantly,
|
|||
|
// as in this case a single scalar factor fails to capture this variation
|
|||
|
// and detrimentally downscales parts of the jacobian approximation which
|
|||
|
// correspond to low-sensitivity parameters. It can also reduce the
|
|||
|
// robustness of the solution to errors in the jacobians.
|
|||
|
//
|
|||
|
// Oren S.S., Self-scaling variable metric (SSVM) algorithms
|
|||
|
// Part II: Implementation and experiments, Management Science,
|
|||
|
// 20(5), 863-874, 1974.
|
|||
|
bool use_approximate_eigenvalue_bfgs_scaling;
|
|||
|
|
|||
|
// Degree of the polynomial used to approximate the objective
|
|||
|
// function. Valid values are BISECTION, QUADRATIC and CUBIC.
|
|||
|
//
|
|||
|
// BISECTION corresponds to pure backtracking search with no
|
|||
|
// interpolation.
|
|||
|
LineSearchInterpolationType line_search_interpolation_type;
|
|||
|
|
|||
|
// If during the line search, the step_size falls below this
|
|||
|
// value, it is truncated to zero.
|
|||
|
double min_line_search_step_size;
|
|||
|
|
|||
|
// Line search parameters.
|
|||
|
|
|||
|
// Solving the line search problem exactly is computationally
|
|||
|
// prohibitive. Fortunately, line search based optimization
|
|||
|
// algorithms can still guarantee convergence if instead of an
|
|||
|
// exact solution, the line search algorithm returns a solution
|
|||
|
// which decreases the value of the objective function
|
|||
|
// sufficiently. More precisely, we are looking for a step_size
|
|||
|
// s.t.
|
|||
|
//
|
|||
|
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
|
|||
|
//
|
|||
|
double line_search_sufficient_function_decrease;
|
|||
|
|
|||
|
// In each iteration of the line search,
|
|||
|
//
|
|||
|
// new_step_size >= max_line_search_step_contraction * step_size
|
|||
|
//
|
|||
|
// Note that by definition, for contraction:
|
|||
|
//
|
|||
|
// 0 < max_step_contraction < min_step_contraction < 1
|
|||
|
//
|
|||
|
double max_line_search_step_contraction;
|
|||
|
|
|||
|
// In each iteration of the line search,
|
|||
|
//
|
|||
|
// new_step_size <= min_line_search_step_contraction * step_size
|
|||
|
//
|
|||
|
// Note that by definition, for contraction:
|
|||
|
//
|
|||
|
// 0 < max_step_contraction < min_step_contraction < 1
|
|||
|
//
|
|||
|
double min_line_search_step_contraction;
|
|||
|
|
|||
|
// Maximum number of trial step size iterations during each line search,
|
|||
|
// if a step size satisfying the search conditions cannot be found within
|
|||
|
// this number of trials, the line search will terminate.
|
|||
|
int max_num_line_search_step_size_iterations;
|
|||
|
|
|||
|
// Maximum number of restarts of the line search direction algorithm before
|
|||
|
// terminating the optimization. Restarts of the line search direction
|
|||
|
// algorithm occur when the current algorithm fails to produce a new descent
|
|||
|
// direction. This typically indicates a numerical failure, or a breakdown
|
|||
|
// in the validity of the approximations used.
|
|||
|
int max_num_line_search_direction_restarts;
|
|||
|
|
|||
|
// The strong Wolfe conditions consist of the Armijo sufficient
|
|||
|
// decrease condition, and an additional requirement that the
|
|||
|
// step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
|
|||
|
// conditions) of the gradient along the search direction
|
|||
|
// decreases sufficiently. Precisely, this second condition
|
|||
|
// is that we seek a step_size s.t.
|
|||
|
//
|
|||
|
// |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
|
|||
|
//
|
|||
|
// Where f() is the line search objective and f'() is the derivative
|
|||
|
// of f w.r.t step_size (d f / d step_size).
|
|||
|
double line_search_sufficient_curvature_decrease;
|
|||
|
|
|||
|
// During the bracketing phase of the Wolfe search, the step size is
|
|||
|
// increased until either a point satisfying the Wolfe conditions is
|
|||
|
// found, or an upper bound for a bracket containing a point satisfying
|
|||
|
// the conditions is found. Precisely, at each iteration of the
|
|||
|
// expansion:
|
|||
|
//
|
|||
|
// new_step_size <= max_step_expansion * step_size.
|
|||
|
//
|
|||
|
// By definition for expansion, max_step_expansion > 1.0.
|
|||
|
double max_line_search_step_expansion;
|
|||
|
|
|||
|
TrustRegionStrategyType trust_region_strategy_type;
|
|||
|
|
|||
|
// Type of dogleg strategy to use.
|
|||
|
DoglegType dogleg_type;
|
|||
|
|
|||
|
// The classical trust region methods are descent methods, in that
|
|||
|
// they only accept a point if it strictly reduces the value of
|
|||
|
// the objective function.
|
|||
|
//
|
|||
|
// Relaxing this requirement allows the algorithm to be more
|
|||
|
// efficient in the long term at the cost of some local increase
|
|||
|
// in the value of the objective function.
|
|||
|
//
|
|||
|
// This is because allowing for non-decreasing objective function
|
|||
|
// values in a princpled manner allows the algorithm to "jump over
|
|||
|
// boulders" as the method is not restricted to move into narrow
|
|||
|
// valleys while preserving its convergence properties.
|
|||
|
//
|
|||
|
// Setting use_nonmonotonic_steps to true enables the
|
|||
|
// non-monotonic trust region algorithm as described by Conn,
|
|||
|
// Gould & Toint in "Trust Region Methods", Section 10.1.
|
|||
|
//
|
|||
|
// The parameter max_consecutive_nonmonotonic_steps controls the
|
|||
|
// window size used by the step selection algorithm to accept
|
|||
|
// non-monotonic steps.
|
|||
|
//
|
|||
|
// Even though the value of the objective function may be larger
|
|||
|
// than the minimum value encountered over the course of the
|
|||
|
// optimization, the final parameters returned to the user are the
|
|||
|
// ones corresponding to the minimum cost over all iterations.
|
|||
|
bool use_nonmonotonic_steps;
|
|||
|
int max_consecutive_nonmonotonic_steps;
|
|||
|
|
|||
|
// Maximum number of iterations for the minimizer to run for.
|
|||
|
int max_num_iterations;
|
|||
|
|
|||
|
// Maximum time for which the minimizer should run for.
|
|||
|
double max_solver_time_in_seconds;
|
|||
|
|
|||
|
// Number of threads used by Ceres for evaluating the cost and
|
|||
|
// jacobians.
|
|||
|
int num_threads;
|
|||
|
|
|||
|
// Trust region minimizer settings.
|
|||
|
double initial_trust_region_radius;
|
|||
|
double max_trust_region_radius;
|
|||
|
|
|||
|
// Minimizer terminates when the trust region radius becomes
|
|||
|
// smaller than this value.
|
|||
|
double min_trust_region_radius;
|
|||
|
|
|||
|
// Lower bound for the relative decrease before a step is
|
|||
|
// accepted.
|
|||
|
double min_relative_decrease;
|
|||
|
|
|||
|
// For the Levenberg-Marquadt algorithm, the scaled diagonal of
|
|||
|
// the normal equations J'J is used to control the size of the
|
|||
|
// trust region. Extremely small and large values along the
|
|||
|
// diagonal can make this regularization scheme
|
|||
|
// fail. max_lm_diagonal and min_lm_diagonal, clamp the values of
|
|||
|
// diag(J'J) from above and below. In the normal course of
|
|||
|
// operation, the user should not have to modify these parameters.
|
|||
|
double min_lm_diagonal;
|
|||
|
double max_lm_diagonal;
|
|||
|
|
|||
|
// Sometimes due to numerical conditioning problems or linear
|
|||
|
// solver flakiness, the trust region strategy may return a
|
|||
|
// numerically invalid step that can be fixed by reducing the
|
|||
|
// trust region size. So the TrustRegionMinimizer allows for a few
|
|||
|
// successive invalid steps before it declares NUMERICAL_FAILURE.
|
|||
|
int max_num_consecutive_invalid_steps;
|
|||
|
|
|||
|
// Minimizer terminates when
|
|||
|
//
|
|||
|
// (new_cost - old_cost) < function_tolerance * old_cost;
|
|||
|
//
|
|||
|
double function_tolerance;
|
|||
|
|
|||
|
// Minimizer terminates when
|
|||
|
//
|
|||
|
// max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance
|
|||
|
//
|
|||
|
// This value should typically be 1e-4 * function_tolerance.
|
|||
|
double gradient_tolerance;
|
|||
|
|
|||
|
// Minimizer terminates when
|
|||
|
//
|
|||
|
// |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance)
|
|||
|
//
|
|||
|
double parameter_tolerance;
|
|||
|
|
|||
|
// Linear least squares solver options -------------------------------------
|
|||
|
|
|||
|
LinearSolverType linear_solver_type;
|
|||
|
|
|||
|
// Type of preconditioner to use with the iterative linear solvers.
|
|||
|
PreconditionerType preconditioner_type;
|
|||
|
|
|||
|
// Type of clustering algorithm to use for visibility based
|
|||
|
// preconditioning. This option is used only when the
|
|||
|
// preconditioner_type is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL.
|
|||
|
VisibilityClusteringType visibility_clustering_type;
|
|||
|
|
|||
|
// Ceres supports using multiple dense linear algebra libraries
|
|||
|
// for dense matrix factorizations. Currently EIGEN and LAPACK are
|
|||
|
// the valid choices. EIGEN is always available, LAPACK refers to
|
|||
|
// the system BLAS + LAPACK library which may or may not be
|
|||
|
// available.
|
|||
|
//
|
|||
|
// This setting affects the DENSE_QR, DENSE_NORMAL_CHOLESKY and
|
|||
|
// DENSE_SCHUR solvers. For small to moderate sized probem EIGEN
|
|||
|
// is a fine choice but for large problems, an optimized LAPACK +
|
|||
|
// BLAS implementation can make a substantial difference in
|
|||
|
// performance.
|
|||
|
DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
|
|||
|
|
|||
|
// Ceres supports using multiple sparse linear algebra libraries
|
|||
|
// for sparse matrix ordering and factorizations. Currently,
|
|||
|
// SUITE_SPARSE and CX_SPARSE are the valid choices, depending on
|
|||
|
// whether they are linked into Ceres at build time.
|
|||
|
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
|
|||
|
|
|||
|
// Number of threads used by Ceres to solve the Newton
|
|||
|
// step. Currently only the SPARSE_SCHUR solver is capable of
|
|||
|
// using this setting.
|
|||
|
int num_linear_solver_threads;
|
|||
|
|
|||
|
// The order in which variables are eliminated in a linear solver
|
|||
|
// can have a significant of impact on the efficiency and accuracy
|
|||
|
// of the method. e.g., when doing sparse Cholesky factorization,
|
|||
|
// there are matrices for which a good ordering will give a
|
|||
|
// Cholesky factor with O(n) storage, where as a bad ordering will
|
|||
|
// result in an completely dense factor.
|
|||
|
//
|
|||
|
// Ceres allows the user to provide varying amounts of hints to
|
|||
|
// the solver about the variable elimination ordering to use. This
|
|||
|
// can range from no hints, where the solver is free to decide the
|
|||
|
// best possible ordering based on the user's choices like the
|
|||
|
// linear solver being used, to an exact order in which the
|
|||
|
// variables should be eliminated, and a variety of possibilities
|
|||
|
// in between.
|
|||
|
//
|
|||
|
// Instances of the ParameterBlockOrdering class are used to
|
|||
|
// communicate this information to Ceres.
|
|||
|
//
|
|||
|
// Formally an ordering is an ordered partitioning of the
|
|||
|
// parameter blocks, i.e, each parameter block belongs to exactly
|
|||
|
// one group, and each group has a unique non-negative integer
|
|||
|
// associated with it, that determines its order in the set of
|
|||
|
// groups.
|
|||
|
//
|
|||
|
// Given such an ordering, Ceres ensures that the parameter blocks in
|
|||
|
// the lowest numbered group are eliminated first, and then the
|
|||
|
// parmeter blocks in the next lowest numbered group and so on. Within
|
|||
|
// each group, Ceres is free to order the parameter blocks as it
|
|||
|
// chooses.
|
|||
|
//
|
|||
|
// If NULL, then all parameter blocks are assumed to be in the
|
|||
|
// same group and the solver is free to decide the best
|
|||
|
// ordering.
|
|||
|
//
|
|||
|
// e.g. Consider the linear system
|
|||
|
//
|
|||
|
// x + y = 3
|
|||
|
// 2x + 3y = 7
|
|||
|
//
|
|||
|
// There are two ways in which it can be solved. First eliminating x
|
|||
|
// from the two equations, solving for y and then back substituting
|
|||
|
// for x, or first eliminating y, solving for x and back substituting
|
|||
|
// for y. The user can construct three orderings here.
|
|||
|
//
|
|||
|
// {0: x}, {1: y} - eliminate x first.
|
|||
|
// {0: y}, {1: x} - eliminate y first.
|
|||
|
// {0: x, y} - Solver gets to decide the elimination order.
|
|||
|
//
|
|||
|
// Thus, to have Ceres determine the ordering automatically using
|
|||
|
// heuristics, put all the variables in group 0 and to control the
|
|||
|
// ordering for every variable, create groups 0..N-1, one per
|
|||
|
// variable, in the desired order.
|
|||
|
//
|
|||
|
// Bundle Adjustment
|
|||
|
// -----------------
|
|||
|
//
|
|||
|
// A particular case of interest is bundle adjustment, where the user
|
|||
|
// has two options. The default is to not specify an ordering at all,
|
|||
|
// the solver will see that the user wants to use a Schur type solver
|
|||
|
// and figure out the right elimination ordering.
|
|||
|
//
|
|||
|
// But if the user already knows what parameter blocks are points and
|
|||
|
// what are cameras, they can save preprocessing time by partitioning
|
|||
|
// the parameter blocks into two groups, one for the points and one
|
|||
|
// for the cameras, where the group containing the points has an id
|
|||
|
// smaller than the group containing cameras.
|
|||
|
shared_ptr<ParameterBlockOrdering> linear_solver_ordering;
|
|||
|
|
|||
|
// Use an explicitly computed Schur complement matrix with
|
|||
|
// ITERATIVE_SCHUR.
|
|||
|
//
|
|||
|
// By default this option is disabled and ITERATIVE_SCHUR
|
|||
|
// evaluates evaluates matrix-vector products between the Schur
|
|||
|
// complement and a vector implicitly by exploiting the algebraic
|
|||
|
// expression for the Schur complement.
|
|||
|
//
|
|||
|
// The cost of this evaluation scales with the number of non-zeros
|
|||
|
// in the Jacobian.
|
|||
|
//
|
|||
|
// For small to medium sized problems there is a sweet spot where
|
|||
|
// computing the Schur complement is cheap enough that it is much
|
|||
|
// more efficient to explicitly compute it and use it for evaluating
|
|||
|
// the matrix-vector products.
|
|||
|
//
|
|||
|
// Enabling this option tells ITERATIVE_SCHUR to use an explicitly
|
|||
|
// computed Schur complement.
|
|||
|
//
|
|||
|
// NOTE: This option can only be used with the SCHUR_JACOBI
|
|||
|
// preconditioner.
|
|||
|
bool use_explicit_schur_complement;
|
|||
|
|
|||
|
// Sparse Cholesky factorization algorithms use a fill-reducing
|
|||
|
// ordering to permute the columns of the Jacobian matrix. There
|
|||
|
// are two ways of doing this.
|
|||
|
|
|||
|
// 1. Compute the Jacobian matrix in some order and then have the
|
|||
|
// factorization algorithm permute the columns of the Jacobian.
|
|||
|
|
|||
|
// 2. Compute the Jacobian with its columns already permuted.
|
|||
|
|
|||
|
// The first option incurs a significant memory penalty. The
|
|||
|
// factorization algorithm has to make a copy of the permuted
|
|||
|
// Jacobian matrix, thus Ceres pre-permutes the columns of the
|
|||
|
// Jacobian matrix and generally speaking, there is no performance
|
|||
|
// penalty for doing so.
|
|||
|
|
|||
|
// In some rare cases, it is worth using a more complicated
|
|||
|
// reordering algorithm which has slightly better runtime
|
|||
|
// performance at the expense of an extra copy of the Jacobian
|
|||
|
// matrix. Setting use_postordering to true enables this tradeoff.
|
|||
|
bool use_postordering;
|
|||
|
|
|||
|
// Some non-linear least squares problems are symbolically dense but
|
|||
|
// numerically sparse. i.e. at any given state only a small number
|
|||
|
// of jacobian entries are non-zero, but the position and number of
|
|||
|
// non-zeros is different depending on the state. For these problems
|
|||
|
// it can be useful to factorize the sparse jacobian at each solver
|
|||
|
// iteration instead of including all of the zero entries in a single
|
|||
|
// general factorization.
|
|||
|
//
|
|||
|
// If your problem does not have this property (or you do not know),
|
|||
|
// then it is probably best to keep this false, otherwise it will
|
|||
|
// likely lead to worse performance.
|
|||
|
|
|||
|
// This settings affects the SPARSE_NORMAL_CHOLESKY solver.
|
|||
|
bool dynamic_sparsity;
|
|||
|
|
|||
|
// Some non-linear least squares problems have additional
|
|||
|
// structure in the way the parameter blocks interact that it is
|
|||
|
// beneficial to modify the way the trust region step is computed.
|
|||
|
//
|
|||
|
// e.g., consider the following regression problem
|
|||
|
//
|
|||
|
// y = a_1 exp(b_1 x) + a_2 exp(b_3 x^2 + c_1)
|
|||
|
//
|
|||
|
// Given a set of pairs{(x_i, y_i)}, the user wishes to estimate
|
|||
|
// a_1, a_2, b_1, b_2, and c_1.
|
|||
|
//
|
|||
|
// Notice here that the expression on the left is linear in a_1
|
|||
|
// and a_2, and given any value for b_1, b_2 and c_1, it is
|
|||
|
// possible to use linear regression to estimate the optimal
|
|||
|
// values of a_1 and a_2. Indeed, its possible to analytically
|
|||
|
// eliminate the variables a_1 and a_2 from the problem all
|
|||
|
// together. Problems like these are known as separable least
|
|||
|
// squares problem and the most famous algorithm for solving them
|
|||
|
// is the Variable Projection algorithm invented by Golub &
|
|||
|
// Pereyra.
|
|||
|
//
|
|||
|
// Similar structure can be found in the matrix factorization with
|
|||
|
// missing data problem. There the corresponding algorithm is
|
|||
|
// known as Wiberg's algorithm.
|
|||
|
//
|
|||
|
// Ruhe & Wedin (Algorithms for Separable Nonlinear Least Squares
|
|||
|
// Problems, SIAM Reviews, 22(3), 1980) present an analyis of
|
|||
|
// various algorithms for solving separable non-linear least
|
|||
|
// squares problems and refer to "Variable Projection" as
|
|||
|
// Algorithm I in their paper.
|
|||
|
//
|
|||
|
// Implementing Variable Projection is tedious and expensive, and
|
|||
|
// they present a simpler algorithm, which they refer to as
|
|||
|
// Algorithm II, where once the Newton/Trust Region step has been
|
|||
|
// computed for the whole problem (a_1, a_2, b_1, b_2, c_1) and
|
|||
|
// additional optimization step is performed to estimate a_1 and
|
|||
|
// a_2 exactly.
|
|||
|
//
|
|||
|
// This idea can be generalized to cases where the residual is not
|
|||
|
// linear in a_1 and a_2, i.e., Solve for the trust region step
|
|||
|
// for the full problem, and then use it as the starting point to
|
|||
|
// further optimize just a_1 and a_2. For the linear case, this
|
|||
|
// amounts to doing a single linear least squares solve. For
|
|||
|
// non-linear problems, any method for solving the a_1 and a_2
|
|||
|
// optimization problems will do. The only constraint on a_1 and
|
|||
|
// a_2 is that they do not co-occur in any residual block.
|
|||
|
//
|
|||
|
// This idea can be further generalized, by not just optimizing
|
|||
|
// (a_1, a_2), but decomposing the graph corresponding to the
|
|||
|
// Hessian matrix's sparsity structure in a collection of
|
|||
|
// non-overlapping independent sets and optimizing each of them.
|
|||
|
//
|
|||
|
// Setting "use_inner_iterations" to true enables the use of this
|
|||
|
// non-linear generalization of Ruhe & Wedin's Algorithm II. This
|
|||
|
// version of Ceres has a higher iteration complexity, but also
|
|||
|
// displays better convergence behaviour per iteration. Setting
|
|||
|
// Solver::Options::num_threads to the maximum number possible is
|
|||
|
// highly recommended.
|
|||
|
bool use_inner_iterations;
|
|||
|
|
|||
|
// If inner_iterations is true, then the user has two choices.
|
|||
|
//
|
|||
|
// 1. Let the solver heuristically decide which parameter blocks
|
|||
|
// to optimize in each inner iteration. To do this leave
|
|||
|
// Solver::Options::inner_iteration_ordering untouched.
|
|||
|
//
|
|||
|
// 2. Specify a collection of of ordered independent sets. Where
|
|||
|
// the lower numbered groups are optimized before the higher
|
|||
|
// number groups. Each group must be an independent set. Not
|
|||
|
// all parameter blocks need to be present in the ordering.
|
|||
|
shared_ptr<ParameterBlockOrdering> inner_iteration_ordering;
|
|||
|
|
|||
|
// Generally speaking, inner iterations make significant progress
|
|||
|
// in the early stages of the solve and then their contribution
|
|||
|
// drops down sharply, at which point the time spent doing inner
|
|||
|
// iterations is not worth it.
|
|||
|
//
|
|||
|
// Once the relative decrease in the objective function due to
|
|||
|
// inner iterations drops below inner_iteration_tolerance, the use
|
|||
|
// of inner iterations in subsequent trust region minimizer
|
|||
|
// iterations is disabled.
|
|||
|
double inner_iteration_tolerance;
|
|||
|
|
|||
|
// Minimum number of iterations for which the linear solver should
|
|||
|
// run, even if the convergence criterion is satisfied.
|
|||
|
int min_linear_solver_iterations;
|
|||
|
|
|||
|
// Maximum number of iterations for which the linear solver should
|
|||
|
// run. If the solver does not converge in less than
|
|||
|
// max_linear_solver_iterations, then it returns MAX_ITERATIONS,
|
|||
|
// as its termination type.
|
|||
|
int max_linear_solver_iterations;
|
|||
|
|
|||
|
// Forcing sequence parameter. The truncated Newton solver uses
|
|||
|
// this number to control the relative accuracy with which the
|
|||
|
// Newton step is computed.
|
|||
|
//
|
|||
|
// This constant is passed to ConjugateGradientsSolver which uses
|
|||
|
// it to terminate the iterations when
|
|||
|
//
|
|||
|
// (Q_i - Q_{i-1})/Q_i < eta/i
|
|||
|
double eta;
|
|||
|
|
|||
|
// Normalize the jacobian using Jacobi scaling before calling
|
|||
|
// the linear least squares solver.
|
|||
|
bool jacobi_scaling;
|
|||
|
|
|||
|
// Logging options ---------------------------------------------------------
|
|||
|
|
|||
|
LoggingType logging_type;
|
|||
|
|
|||
|
// By default the Minimizer progress is logged to VLOG(1), which
|
|||
|
// is sent to STDERR depending on the vlog level. If this flag is
|
|||
|
// set to true, and logging_type is not SILENT, the logging output
|
|||
|
// is sent to STDOUT.
|
|||
|
bool minimizer_progress_to_stdout;
|
|||
|
|
|||
|
// List of iterations at which the minimizer should dump the trust
|
|||
|
// region problem. Useful for testing and benchmarking. If empty
|
|||
|
// (default), no problems are dumped.
|
|||
|
std::vector<int> trust_region_minimizer_iterations_to_dump;
|
|||
|
|
|||
|
// Directory to which the problems should be written to. Should be
|
|||
|
// non-empty if trust_region_minimizer_iterations_to_dump is
|
|||
|
// non-empty and trust_region_problem_dump_format_type is not
|
|||
|
// CONSOLE.
|
|||
|
std::string trust_region_problem_dump_directory;
|
|||
|
DumpFormatType trust_region_problem_dump_format_type;
|
|||
|
|
|||
|
// Finite differences options ----------------------------------------------
|
|||
|
|
|||
|
// Check all jacobians computed by each residual block with finite
|
|||
|
// differences. This is expensive since it involves computing the
|
|||
|
// derivative by normal means (e.g. user specified, autodiff,
|
|||
|
// etc), then also computing it using finite differences. The
|
|||
|
// results are compared, and if they differ substantially, details
|
|||
|
// are printed to the log.
|
|||
|
bool check_gradients;
|
|||
|
|
|||
|
// Relative precision to check for in the gradient checker. If the
|
|||
|
// relative difference between an element in a jacobian exceeds
|
|||
|
// this number, then the jacobian for that cost term is dumped.
|
|||
|
double gradient_check_relative_precision;
|
|||
|
|
|||
|
// Relative shift used for taking numeric derivatives. For finite
|
|||
|
// differencing, each dimension is evaluated at slightly shifted
|
|||
|
// values; for the case of central difference, this is what gets
|
|||
|
// evaluated:
|
|||
|
//
|
|||
|
// delta = numeric_derivative_relative_step_size;
|
|||
|
// f_initial = f(x)
|
|||
|
// f_forward = f((1 + delta) * x)
|
|||
|
// f_backward = f((1 - delta) * x)
|
|||
|
//
|
|||
|
// The finite differencing is done along each dimension. The
|
|||
|
// reason to use a relative (rather than absolute) step size is
|
|||
|
// that this way, numeric differentation works for functions where
|
|||
|
// the arguments are typically large (e.g. 1e9) and when the
|
|||
|
// values are small (e.g. 1e-5). It is possible to construct
|
|||
|
// "torture cases" which break this finite difference heuristic,
|
|||
|
// but they do not come up often in practice.
|
|||
|
//
|
|||
|
// TODO(keir): Pick a smarter number than the default above! In
|
|||
|
// theory a good choice is sqrt(eps) * x, which for doubles means
|
|||
|
// about 1e-8 * x. However, I have found this number too
|
|||
|
// optimistic. This number should be exposed for users to change.
|
|||
|
double numeric_derivative_relative_step_size;
|
|||
|
|
|||
|
// If true, the user's parameter blocks are updated at the end of
|
|||
|
// every Minimizer iteration, otherwise they are updated when the
|
|||
|
// Minimizer terminates. This is useful if, for example, the user
|
|||
|
// wishes to visualize the state of the optimization every
|
|||
|
// iteration.
|
|||
|
bool update_state_every_iteration;
|
|||
|
|
|||
|
// Callbacks that are executed at the end of each iteration of the
|
|||
|
// Minimizer. An iteration may terminate midway, either due to
|
|||
|
// numerical failures or because one of the convergence tests has
|
|||
|
// been satisfied. In this case none of the callbacks are
|
|||
|
// executed.
|
|||
|
|
|||
|
// Callbacks are executed in the order that they are specified in
|
|||
|
// this vector. By default, parameter blocks are updated only at
|
|||
|
// the end of the optimization, i.e when the Minimizer
|
|||
|
// terminates. This behaviour is controlled by
|
|||
|
// update_state_every_variable. If the user wishes to have access
|
|||
|
// to the update parameter blocks when his/her callbacks are
|
|||
|
// executed, then set update_state_every_iteration to true.
|
|||
|
//
|
|||
|
// The solver does NOT take ownership of these pointers.
|
|||
|
std::vector<IterationCallback*> callbacks;
|
|||
|
};
|
|||
|
|
|||
|
struct CERES_EXPORT Summary {
|
|||
|
Summary();
|
|||
|
|
|||
|
// A brief one line description of the state of the solver after
|
|||
|
// termination.
|
|||
|
std::string BriefReport() const;
|
|||
|
|
|||
|
// A full multiline description of the state of the solver after
|
|||
|
// termination.
|
|||
|
std::string FullReport() const;
|
|||
|
|
|||
|
bool IsSolutionUsable() const;
|
|||
|
|
|||
|
// Minimizer summary -------------------------------------------------
|
|||
|
MinimizerType minimizer_type;
|
|||
|
|
|||
|
TerminationType termination_type;
|
|||
|
|
|||
|
// Reason why the solver terminated.
|
|||
|
std::string message;
|
|||
|
|
|||
|
// Cost of the problem (value of the objective function) before
|
|||
|
// the optimization.
|
|||
|
double initial_cost;
|
|||
|
|
|||
|
// Cost of the problem (value of the objective function) after the
|
|||
|
// optimization.
|
|||
|
double final_cost;
|
|||
|
|
|||
|
// The part of the total cost that comes from residual blocks that
|
|||
|
// were held fixed by the preprocessor because all the parameter
|
|||
|
// blocks that they depend on were fixed.
|
|||
|
double fixed_cost;
|
|||
|
|
|||
|
// IterationSummary for each minimizer iteration in order.
|
|||
|
std::vector<IterationSummary> iterations;
|
|||
|
|
|||
|
// Number of minimizer iterations in which the step was
|
|||
|
// accepted. Unless use_non_monotonic_steps is true this is also
|
|||
|
// the number of steps in which the objective function value/cost
|
|||
|
// went down.
|
|||
|
int num_successful_steps;
|
|||
|
|
|||
|
// Number of minimizer iterations in which the step was rejected
|
|||
|
// either because it did not reduce the cost enough or the step
|
|||
|
// was not numerically valid.
|
|||
|
int num_unsuccessful_steps;
|
|||
|
|
|||
|
// Number of times inner iterations were performed.
|
|||
|
int num_inner_iteration_steps;
|
|||
|
|
|||
|
// All times reported below are wall times.
|
|||
|
|
|||
|
// When the user calls Solve, before the actual optimization
|
|||
|
// occurs, Ceres performs a number of preprocessing steps. These
|
|||
|
// include error checks, memory allocations, and reorderings. This
|
|||
|
// time is accounted for as preprocessing time.
|
|||
|
double preprocessor_time_in_seconds;
|
|||
|
|
|||
|
// Time spent in the TrustRegionMinimizer.
|
|||
|
double minimizer_time_in_seconds;
|
|||
|
|
|||
|
// After the Minimizer is finished, some time is spent in
|
|||
|
// re-evaluating residuals etc. This time is accounted for in the
|
|||
|
// postprocessor time.
|
|||
|
double postprocessor_time_in_seconds;
|
|||
|
|
|||
|
// Some total of all time spent inside Ceres when Solve is called.
|
|||
|
double total_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent in the linear solver computing the
|
|||
|
// trust region step.
|
|||
|
double linear_solver_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent evaluating the residual vector.
|
|||
|
double residual_evaluation_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent evaluating the jacobian matrix.
|
|||
|
double jacobian_evaluation_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent doing inner iterations.
|
|||
|
double inner_iteration_time_in_seconds;
|
|||
|
|
|||
|
// Cumulative timing information for line searches performed as part of the
|
|||
|
// solve. Note that in addition to the case when the Line Search minimizer
|
|||
|
// is used, the Trust Region minimizer also uses a line search when
|
|||
|
// solving a constrained problem.
|
|||
|
|
|||
|
// Time (in seconds) spent evaluating the univariate cost function as part
|
|||
|
// of a line search.
|
|||
|
double line_search_cost_evaluation_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent evaluating the gradient of the univariate cost
|
|||
|
// function as part of a line search.
|
|||
|
double line_search_gradient_evaluation_time_in_seconds;
|
|||
|
|
|||
|
// Time (in seconds) spent minimizing the interpolating polynomial
|
|||
|
// to compute the next candidate step size as part of a line search.
|
|||
|
double line_search_polynomial_minimization_time_in_seconds;
|
|||
|
|
|||
|
// Total time (in seconds) spent performing line searches.
|
|||
|
double line_search_total_time_in_seconds;
|
|||
|
|
|||
|
// Number of parameter blocks in the problem.
|
|||
|
int num_parameter_blocks;
|
|||
|
|
|||
|
// Number of parameters in the probem.
|
|||
|
int num_parameters;
|
|||
|
|
|||
|
// Dimension of the tangent space of the problem (or the number of
|
|||
|
// columns in the Jacobian for the problem). This is different
|
|||
|
// from num_parameters if a parameter block is associated with a
|
|||
|
// LocalParameterization
|
|||
|
int num_effective_parameters;
|
|||
|
|
|||
|
// Number of residual blocks in the problem.
|
|||
|
int num_residual_blocks;
|
|||
|
|
|||
|
// Number of residuals in the problem.
|
|||
|
int num_residuals;
|
|||
|
|
|||
|
// Number of parameter blocks in the problem after the inactive
|
|||
|
// and constant parameter blocks have been removed. A parameter
|
|||
|
// block is inactive if no residual block refers to it.
|
|||
|
int num_parameter_blocks_reduced;
|
|||
|
|
|||
|
// Number of parameters in the reduced problem.
|
|||
|
int num_parameters_reduced;
|
|||
|
|
|||
|
// Dimension of the tangent space of the reduced problem (or the
|
|||
|
// number of columns in the Jacobian for the reduced
|
|||
|
// problem). This is different from num_parameters_reduced if a
|
|||
|
// parameter block in the reduced problem is associated with a
|
|||
|
// LocalParameterization.
|
|||
|
int num_effective_parameters_reduced;
|
|||
|
|
|||
|
// Number of residual blocks in the reduced problem.
|
|||
|
int num_residual_blocks_reduced;
|
|||
|
|
|||
|
// Number of residuals in the reduced problem.
|
|||
|
int num_residuals_reduced;
|
|||
|
|
|||
|
// Is the reduced problem bounds constrained.
|
|||
|
bool is_constrained;
|
|||
|
|
|||
|
// Number of threads specified by the user for Jacobian and
|
|||
|
// residual evaluation.
|
|||
|
int num_threads_given;
|
|||
|
|
|||
|
// Number of threads actually used by the solver for Jacobian and
|
|||
|
// residual evaluation. This number is not equal to
|
|||
|
// num_threads_given if OpenMP is not available.
|
|||
|
int num_threads_used;
|
|||
|
|
|||
|
// Number of threads specified by the user for solving the trust
|
|||
|
// region problem.
|
|||
|
int num_linear_solver_threads_given;
|
|||
|
|
|||
|
// Number of threads actually used by the solver for solving the
|
|||
|
// trust region problem. This number is not equal to
|
|||
|
// num_threads_given if OpenMP is not available.
|
|||
|
int num_linear_solver_threads_used;
|
|||
|
|
|||
|
// Type of the linear solver requested by the user.
|
|||
|
LinearSolverType linear_solver_type_given;
|
|||
|
|
|||
|
// Type of the linear solver actually used. This may be different
|
|||
|
// from linear_solver_type_given if Ceres determines that the
|
|||
|
// problem structure is not compatible with the linear solver
|
|||
|
// requested or if the linear solver requested by the user is not
|
|||
|
// available, e.g. The user requested SPARSE_NORMAL_CHOLESKY but
|
|||
|
// no sparse linear algebra library was available.
|
|||
|
LinearSolverType linear_solver_type_used;
|
|||
|
|
|||
|
// Size of the elimination groups given by the user as hints to
|
|||
|
// the linear solver.
|
|||
|
std::vector<int> linear_solver_ordering_given;
|
|||
|
|
|||
|
// Size of the parameter groups used by the solver when ordering
|
|||
|
// the columns of the Jacobian. This maybe different from
|
|||
|
// linear_solver_ordering_given if the user left
|
|||
|
// linear_solver_ordering_given blank and asked for an automatic
|
|||
|
// ordering, or if the problem contains some constant or inactive
|
|||
|
// parameter blocks.
|
|||
|
std::vector<int> linear_solver_ordering_used;
|
|||
|
|
|||
|
// True if the user asked for inner iterations to be used as part
|
|||
|
// of the optimization.
|
|||
|
bool inner_iterations_given;
|
|||
|
|
|||
|
// True if the user asked for inner iterations to be used as part
|
|||
|
// of the optimization and the problem structure was such that
|
|||
|
// they were actually performed. e.g., in a problem with just one
|
|||
|
// parameter block, inner iterations are not performed.
|
|||
|
bool inner_iterations_used;
|
|||
|
|
|||
|
// Size of the parameter groups given by the user for performing
|
|||
|
// inner iterations.
|
|||
|
std::vector<int> inner_iteration_ordering_given;
|
|||
|
|
|||
|
// Size of the parameter groups given used by the solver for
|
|||
|
// performing inner iterations. This maybe different from
|
|||
|
// inner_iteration_ordering_given if the user left
|
|||
|
// inner_iteration_ordering_given blank and asked for an automatic
|
|||
|
// ordering, or if the problem contains some constant or inactive
|
|||
|
// parameter blocks.
|
|||
|
std::vector<int> inner_iteration_ordering_used;
|
|||
|
|
|||
|
// Type of the preconditioner requested by the user.
|
|||
|
PreconditionerType preconditioner_type_given;
|
|||
|
|
|||
|
// Type of the preconditioner actually used. This may be different
|
|||
|
// from linear_solver_type_given if Ceres determines that the
|
|||
|
// problem structure is not compatible with the linear solver
|
|||
|
// requested or if the linear solver requested by the user is not
|
|||
|
// available.
|
|||
|
PreconditionerType preconditioner_type_used;
|
|||
|
|
|||
|
// Type of clustering algorithm used for visibility based
|
|||
|
// preconditioning. Only meaningful when the preconditioner_type
|
|||
|
// is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL.
|
|||
|
VisibilityClusteringType visibility_clustering_type;
|
|||
|
|
|||
|
// Type of trust region strategy.
|
|||
|
TrustRegionStrategyType trust_region_strategy_type;
|
|||
|
|
|||
|
// Type of dogleg strategy used for solving the trust region
|
|||
|
// problem.
|
|||
|
DoglegType dogleg_type;
|
|||
|
|
|||
|
// Type of the dense linear algebra library used.
|
|||
|
DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
|
|||
|
|
|||
|
// Type of the sparse linear algebra library used.
|
|||
|
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
|
|||
|
|
|||
|
// Type of line search direction used.
|
|||
|
LineSearchDirectionType line_search_direction_type;
|
|||
|
|
|||
|
// Type of the line search algorithm used.
|
|||
|
LineSearchType line_search_type;
|
|||
|
|
|||
|
// When performing line search, the degree of the polynomial used
|
|||
|
// to approximate the objective function.
|
|||
|
LineSearchInterpolationType line_search_interpolation_type;
|
|||
|
|
|||
|
// If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,
|
|||
|
// then this indicates the particular variant of non-linear
|
|||
|
// conjugate gradient used.
|
|||
|
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
|
|||
|
|
|||
|
// If the type of the line search direction is LBFGS, then this
|
|||
|
// indicates the rank of the Hessian approximation.
|
|||
|
int max_lbfgs_rank;
|
|||
|
};
|
|||
|
|
|||
|
// Once a least squares problem has been built, this function takes
|
|||
|
// the problem and optimizes it based on the values of the options
|
|||
|
// parameters. Upon return, a detailed summary of the work performed
|
|||
|
// by the preprocessor, the non-linear minmizer and the linear
|
|||
|
// solver are reported in the summary object.
|
|||
|
virtual void Solve(const Options& options,
|
|||
|
Problem* problem,
|
|||
|
Solver::Summary* summary);
|
|||
|
};
|
|||
|
|
|||
|
// Helper function which avoids going through the interface.
|
|||
|
CERES_EXPORT void Solve(const Solver::Options& options,
|
|||
|
Problem* problem,
|
|||
|
Solver::Summary* summary);
|
|||
|
|
|||
|
} // namespace ceres
|
|||
|
|
|||
|
#include "ceres/internal/reenable_warnings.h"
|
|||
|
|
|||
|
#endif // CERES_PUBLIC_SOLVER_H_
|