MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/SparseQR/SparseQR.h

715 lines
26 KiB
C
Raw Normal View History

2019-01-03 10:25:18 +02:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_QR_H
#define EIGEN_SPARSE_QR_H
namespace Eigen {
template<typename MatrixType, typename OrderingType> class SparseQR;
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
namespace internal {
template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
typedef typename ReturnType::Index Index;
typedef typename ReturnType::StorageKind StorageKind;
};
template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
};
template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
} // End namespace internal
/**
* \ingroup SparseQR_Module
* \class SparseQR
* \brief Sparse left-looking rank-revealing QR factorization
*
* This class implements a left-looking rank-revealing QR decomposition
* of sparse matrices. When a column has a norm less than a given tolerance
* it is implicitly permuted to the end. The QR factorization thus obtained is
* given by A*P = Q*R where R is upper triangular or trapezoidal.
*
* P is the column permutation which is the product of the fill-reducing and the
* rank-revealing permutations. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as products of Householder reflectors.
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
* You can then apply it to a vector.
*
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
*
*/
template<typename _MatrixType, typename _OrderingType>
class SparseQR
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{ }
/** Construct a QR factorization of the matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa compute()
*/
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{
compute(mat);
}
/** Computes the QR factorization of the sparse matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa analyzePattern(), factorize()
*/
void compute(const MatrixType& mat)
{
analyzePattern(mat);
factorize(mat);
}
void analyzePattern(const MatrixType& mat);
void factorize(const MatrixType& mat);
/** \returns the number of rows of the represented matrix.
*/
inline Index rows() const { return m_pmat.rows(); }
/** \returns the number of columns of the represented matrix.
*/
inline Index cols() const { return m_pmat.cols();}
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
*/
const QRMatrixType& matrixR() const { return m_R; }
/** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
*
* \sa setPivotThreshold()
*/
Index rank() const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
return m_nonzeropivots;
}
/** \returns an expression of the matrix Q as products of sparse Householder reflectors.
* The common usage of this function is to apply it to a dense matrix or vector
* \code
* VectorXd B1, B2;
* // Initialize B1
* B2 = matrixQ() * B1;
* \endcode
*
* To get a plain SparseMatrix representation of Q:
* \code
* SparseMatrix<double> Q;
* Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
* \endcode
* Internally, this call simply performs a sparse product between the matrix Q
* and a sparse identity matrix. However, due to the fact that the sparse
* reflectors are stored unsorted, two transpositions are needed to sort
* them before performing the product.
*/
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
/** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
* It is the combination of the fill-in reducing permutation and numerical column pivoting.
*/
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_outputPerm_c;
}
/** \returns A string describing the type of error.
* This method is provided to ease debugging, not to handle errors.
*/
std::string lastErrorMessage() const { return m_lastError; }
/** \internal */
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
Index rank = this->rank();
// Compute Q^T * b;
typename Dest::PlainObject y, b;
y = this->matrixQ().transpose() * B;
b = y;
// Solve with the triangular matrix R
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
y.bottomRows(y.rows()-rank).setZero();
// Apply the column permutation
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
m_info = Success;
return true;
}
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
*
* In practice, if during the factorization the norm of the column that has to be eliminated is below
* this threshold, then the entire column is treated as zero, and it is moved at the end.
*/
void setPivotThreshold(const RealScalar& threshold)
{
m_useDefaultThreshold = false;
m_threshold = threshold;
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
}
template<typename Rhs>
inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the QR factorization reports a numerical problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
protected:
inline void sort_matrix_Q()
{
if(this->m_isQSorted) return;
// The matrix Q is sorted during the transposition
SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
this->m_Q = mQrm;
this->m_isQSorted = true;
}
protected:
bool m_isInitialized;
bool m_analysisIsok;
bool m_factorizationIsok;
mutable ComputationInfo m_info;
std::string m_lastError;
QRMatrixType m_pmat; // Temporary matrix
QRMatrixType m_R; // The triangular factor matrix
QRMatrixType m_Q; // The orthogonal reflectors
ScalarVector m_hcoeffs; // The Householder coefficients
PermutationType m_perm_c; // Fill-reducing Column permutation
PermutationType m_pivotperm; // The permutation for rank revealing
PermutationType m_outputPerm_c; // The final column permutation
RealScalar m_threshold; // Threshold to determine null Householder reflections
bool m_useDefaultThreshold; // Use default threshold
Index m_nonzeropivots; // Number of non zero pivots found
IndexVector m_etree; // Column elimination tree
IndexVector m_firstRowElt; // First element in each row
bool m_isQSorted; // whether Q is sorted or not
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
template <typename, typename > friend struct SparseQR_QProduct;
template <typename > friend struct SparseQRMatrixQReturnType;
};
/** \brief Preprocessing step of a QR factorization
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
*
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
// Copy to a column major matrix if the input is rowmajor
typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
// Compute the column fill reducing ordering
OrderingType ord;
ord(matCpy, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
Index diagSize = (std::min)(m,n);
if (!m_perm_c.size())
{
m_perm_c.resize(n);
m_perm_c.indices().setLinSpaced(n, 0,n-1);
}
// Compute the column elimination tree of the permuted matrix
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
m_R.resize(m, n);
m_Q.resize(m, diagSize);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(diagSize);
m_analysisIsok = true;
}
/** \brief Performs the numerical QR factorization of the input matrix
*
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
* a matrix having the same sparsity pattern than \a mat.
*
* \param mat The sparse column-major matrix
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
using std::abs;
using std::max;
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
Index m = mat.rows();
Index n = mat.cols();
Index diagSize = (std::min)(m,n);
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
ScalarVector tval(m); // The dense vector used to compute the current column
RealScalar pivotThreshold = m_threshold;
m_R.setZero();
m_Q.setZero();
m_pmat = mat;
if(!m_isEtreeOk)
{
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
}
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
// Apply the fill-in reducing permutation lazily:
{
// If the input is row major, copy the original column indices,
// otherwise directly use the input matrix
//
IndexVector originalOuterIndicesCpy;
const Index *originalOuterIndices = mat.outerIndexPtr();
if(MatrixType::IsRowMajor)
{
originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
originalOuterIndices = originalOuterIndicesCpy.data();
}
for (int i = 0; i < n; i++)
{
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
}
}
/* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
if(m_useDefaultThreshold)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
if(max2Norm==RealScalar(0))
max2Norm = RealScalar(1);
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
}
// Initialize the numerical permutation
m_pivotperm.setIdentity(n);
Index nonzeroCol = 0; // Record the number of valid pivots
m_Q.startVec(0);
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
for (Index col = 0; col < n; ++col)
{
mark.setConstant(-1);
m_R.startVec(col);
mark(nonzeroCol) = col;
Qidx(0) = nonzeroCol;
nzcolR = 0; nzcolQ = 1;
bool found_diag = nonzeroCol>=m;
tval.setZero();
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
Index curIdx = nonzeroCol;
if(itp) curIdx = itp.row();
if(curIdx == nonzeroCol) found_diag = true;
// Get the nonzeros indexes of the current column of R
Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
if (st < 0 )
{
m_lastError = "Empty row found during numerical factorization";
m_info = InvalidInput;
return;
}
// Traverse the etree
Index bi = nzcolR;
for (; mark(st) != col; st = m_etree(st))
{
Ridx(nzcolR) = st; // Add this row to the list,
mark(st) = col; // and mark this row as visited
nzcolR++;
}
// Reverse the list to get the topological ordering
Index nt = nzcolR-bi;
for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
// Copy the current (curIdx,pcol) value of the input matrix
if(itp) tval(curIdx) = itp.value();
else tval(curIdx) = Scalar(0);
// Compute the pattern of Q(:,k)
if(curIdx > nonzeroCol && mark(curIdx) != col )
{
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
mark(curIdx) = col; // and mark it as visited
nzcolQ++;
}
}
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
Scalar tdot(0);
// First compute q' * tval
tdot = m_Q.col(curIdx).dot(tval);
tdot *= m_hcoeffs(curIdx);
// Then update tval = tval - q * tau
// FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
tval(itq.row()) -= itq.value() * tdot;
// Detect fill-in for the current column of Q
if(m_etree(Ridx(i)) == nonzeroCol)
{
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
Index iQ = itq.row();
if (mark(iQ) != col)
{
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
mark(iQ) = col; // and mark it as visited
}
}
}
} // End update current column
Scalar tau = 0;
RealScalar beta = 0;
if(nonzeroCol < diagSize)
{
// Compute the Householder reflection that eliminate the current column
// FIXME this step should call the Householder module.
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
// First, the squared norm of Q((col+1):m, col)
RealScalar sqrNorm = 0.;
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
{
beta = numext::real(c0);
tval(Qidx(0)) = 1;
}
else
{
using std::sqrt;
beta = sqrt(numext::abs2(c0) + sqrNorm);
if(numext::real(c0) >= RealScalar(0))
beta = -beta;
tval(Qidx(0)) = 1;
for (Index itq = 1; itq < nzcolQ; ++itq)
tval(Qidx(itq)) /= (c0 - beta);
tau = numext::conj((beta-c0) / beta);
}
}
// Insert values in R
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
if(curIdx < nonzeroCol)
{
m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
tval(curIdx) = Scalar(0.);
}
}
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
{
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
// The householder coefficient
m_hcoeffs(nonzeroCol) = tau;
// Record the householder reflections
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
}
nonzeroCol++;
if(nonzeroCol<diagSize)
m_Q.startVec(nonzeroCol);
}
else
{
// Zero pivot found: move implicitly this column to the end
for (Index j = nonzeroCol; j < n-1; j++)
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
// Recompute the column elimination tree
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
m_isEtreeOk = false;
}
}
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
// Finalize the column pointers of the sparse matrices R and Q
m_Q.finalize();
m_Q.makeCompressed();
m_R.finalize();
m_R.makeCompressed();
m_isQSorted = false;
m_nonzeropivots = nonzeroCol;
if(nonzeroCol<n)
{
// Permute the triangular factor to put the 'dead' columns to the end
QRMatrixType tempR(m_R);
m_R = tempR * m_pivotperm;
// Update the column permutation
m_outputPerm_c = m_outputPerm_c * m_pivotperm;
}
m_isInitialized = true;
m_factorizationIsok = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
: solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
{
typedef SparseQR<_MatrixType,OrderingType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
: sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
{
typedef SparseQR<_MatrixType, OrderingType> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
this->defaultEvalTo(dst);
}
};
} // end namespace internal
template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename SparseQRType::QRMatrixType MatrixType;
typedef typename SparseQRType::Scalar Scalar;
typedef typename SparseQRType::Index Index;
// Get the references
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
m_qr(qr),m_other(other),m_transpose(transpose) {}
inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
template<typename DesType>
void evalTo(DesType& res) const
{
Index m = m_qr.rows();
Index n = m_qr.cols();
Index diagSize = (std::min)(m,n);
res = m_other;
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
//Compute res = Q' * other column by column
for(Index j = 0; j < res.cols(); j++){
for (Index k = 0; k < diagSize; k++)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
else
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
for (Index k = diagSize-1; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
}
const SparseQRType& m_qr;
const Derived& m_other;
bool m_transpose;
};
template<typename SparseQRType>
struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::Index Index;
typedef typename SparseQRType::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
}
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
{
dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
}
template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
{
Dest idMat(m_qr.rows(), m_qr.rows());
idMat.setIdentity();
// Sort the sparse householder reflectors if needed
const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
}
const SparseQRType& m_qr;
};
template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
}
const SparseQRType& m_qr;
};
} // end namespace Eigen
#endif