311 lines
10 KiB
C
311 lines
10 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: jorg@google.com (Jorg Brown)
|
||
|
//
|
||
|
// This is an implementation designed to match the anticipated future TR2
|
||
|
// implementation of the scoped_ptr class, and its closely-related brethren,
|
||
|
// scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
|
||
|
|
||
|
#ifndef CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
|
||
|
#define CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <cstddef>
|
||
|
#include <algorithm>
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
template <class C> class scoped_ptr;
|
||
|
template <class C, class Free> class scoped_ptr_malloc;
|
||
|
template <class C> class scoped_array;
|
||
|
|
||
|
template <class C>
|
||
|
scoped_ptr<C> make_scoped_ptr(C *);
|
||
|
|
||
|
// A scoped_ptr<T> is like a T*, except that the destructor of
|
||
|
// scoped_ptr<T> automatically deletes the pointer it holds (if
|
||
|
// any). That is, scoped_ptr<T> owns the T object that it points
|
||
|
// to. Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to
|
||
|
// a T object. Also like T*, scoped_ptr<T> is thread-compatible, and
|
||
|
// once you dereference it, you get the threadsafety guarantees of T.
|
||
|
//
|
||
|
// The size of a scoped_ptr is small: sizeof(scoped_ptr<C>) == sizeof(C*)
|
||
|
template <class C>
|
||
|
class scoped_ptr {
|
||
|
public:
|
||
|
// The element type
|
||
|
typedef C element_type;
|
||
|
|
||
|
// Constructor. Defaults to intializing with NULL.
|
||
|
// There is no way to create an uninitialized scoped_ptr.
|
||
|
// The input parameter must be allocated with new.
|
||
|
explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
|
||
|
|
||
|
// Destructor. If there is a C object, delete it.
|
||
|
// We don't need to test ptr_ == NULL because C++ does that for us.
|
||
|
~scoped_ptr() {
|
||
|
enum { type_must_be_complete = sizeof(C) };
|
||
|
delete ptr_;
|
||
|
}
|
||
|
|
||
|
// Reset. Deletes the current owned object, if any.
|
||
|
// Then takes ownership of a new object, if given.
|
||
|
// this->reset(this->get()) works.
|
||
|
void reset(C* p = NULL) {
|
||
|
if (p != ptr_) {
|
||
|
enum { type_must_be_complete = sizeof(C) };
|
||
|
delete ptr_;
|
||
|
ptr_ = p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Accessors to get the owned object.
|
||
|
// operator* and operator-> will assert() if there is no current object.
|
||
|
C& operator*() const {
|
||
|
assert(ptr_ != NULL);
|
||
|
return *ptr_;
|
||
|
}
|
||
|
C* operator->() const {
|
||
|
assert(ptr_ != NULL);
|
||
|
return ptr_;
|
||
|
}
|
||
|
C* get() const { return ptr_; }
|
||
|
|
||
|
// Comparison operators.
|
||
|
// These return whether a scoped_ptr and a raw pointer refer to
|
||
|
// the same object, not just to two different but equal objects.
|
||
|
bool operator==(const C* p) const { return ptr_ == p; }
|
||
|
bool operator!=(const C* p) const { return ptr_ != p; }
|
||
|
|
||
|
// Swap two scoped pointers.
|
||
|
void swap(scoped_ptr& p2) {
|
||
|
C* tmp = ptr_;
|
||
|
ptr_ = p2.ptr_;
|
||
|
p2.ptr_ = tmp;
|
||
|
}
|
||
|
|
||
|
// Release a pointer.
|
||
|
// The return value is the current pointer held by this object.
|
||
|
// If this object holds a NULL pointer, the return value is NULL.
|
||
|
// After this operation, this object will hold a NULL pointer,
|
||
|
// and will not own the object any more.
|
||
|
C* release() {
|
||
|
C* retVal = ptr_;
|
||
|
ptr_ = NULL;
|
||
|
return retVal;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
C* ptr_;
|
||
|
|
||
|
// google3 friend class that can access copy ctor (although if it actually
|
||
|
// calls a copy ctor, there will be a problem) see below
|
||
|
friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
|
||
|
|
||
|
// Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
|
||
|
// make sense, and if C2 == C, it still doesn't make sense because you should
|
||
|
// never have the same object owned by two different scoped_ptrs.
|
||
|
template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
|
||
|
template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
|
||
|
|
||
|
// Disallow evil constructors
|
||
|
scoped_ptr(const scoped_ptr&);
|
||
|
void operator=(const scoped_ptr&);
|
||
|
};
|
||
|
|
||
|
// Free functions
|
||
|
template <class C>
|
||
|
inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
|
||
|
p1.swap(p2);
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
|
||
|
return p1 == p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
|
||
|
return p1 == p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
|
||
|
return p1 != p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
|
||
|
return p1 != p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
scoped_ptr<C> make_scoped_ptr(C *p) {
|
||
|
// This does nothing but to return a scoped_ptr of the type that the passed
|
||
|
// pointer is of. (This eliminates the need to specify the name of T when
|
||
|
// making a scoped_ptr that is used anonymously/temporarily.) From an
|
||
|
// access control point of view, we construct an unnamed scoped_ptr here
|
||
|
// which we return and thus copy-construct. Hence, we need to have access
|
||
|
// to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed
|
||
|
// that we never actually call the copy constructor, which is a good thing
|
||
|
// as we would call the temporary's object destructor (and thus delete p)
|
||
|
// if we actually did copy some object, here.
|
||
|
return scoped_ptr<C>(p);
|
||
|
}
|
||
|
|
||
|
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
|
||
|
// with new [] and the destructor deletes objects with delete [].
|
||
|
//
|
||
|
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
|
||
|
// or is NULL. A scoped_array<C> owns the object that it points to.
|
||
|
// scoped_array<T> is thread-compatible, and once you index into it,
|
||
|
// the returned objects have only the threadsafety guarantees of T.
|
||
|
//
|
||
|
// Size: sizeof(scoped_array<C>) == sizeof(C*)
|
||
|
template <class C>
|
||
|
class scoped_array {
|
||
|
public:
|
||
|
// The element type
|
||
|
typedef C element_type;
|
||
|
|
||
|
// Constructor. Defaults to intializing with NULL.
|
||
|
// There is no way to create an uninitialized scoped_array.
|
||
|
// The input parameter must be allocated with new [].
|
||
|
explicit scoped_array(C* p = NULL) : array_(p) { }
|
||
|
|
||
|
// Destructor. If there is a C object, delete it.
|
||
|
// We don't need to test ptr_ == NULL because C++ does that for us.
|
||
|
~scoped_array() {
|
||
|
enum { type_must_be_complete = sizeof(C) };
|
||
|
delete[] array_;
|
||
|
}
|
||
|
|
||
|
// Reset. Deletes the current owned object, if any.
|
||
|
// Then takes ownership of a new object, if given.
|
||
|
// this->reset(this->get()) works.
|
||
|
void reset(C* p = NULL) {
|
||
|
if (p != array_) {
|
||
|
enum { type_must_be_complete = sizeof(C) };
|
||
|
delete[] array_;
|
||
|
array_ = p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Get one element of the current object.
|
||
|
// Will assert() if there is no current object, or index i is negative.
|
||
|
C& operator[](std::ptrdiff_t i) const {
|
||
|
assert(i >= 0);
|
||
|
assert(array_ != NULL);
|
||
|
return array_[i];
|
||
|
}
|
||
|
|
||
|
// Get a pointer to the zeroth element of the current object.
|
||
|
// If there is no current object, return NULL.
|
||
|
C* get() const {
|
||
|
return array_;
|
||
|
}
|
||
|
|
||
|
// Comparison operators.
|
||
|
// These return whether a scoped_array and a raw pointer refer to
|
||
|
// the same array, not just to two different but equal arrays.
|
||
|
bool operator==(const C* p) const { return array_ == p; }
|
||
|
bool operator!=(const C* p) const { return array_ != p; }
|
||
|
|
||
|
// Swap two scoped arrays.
|
||
|
void swap(scoped_array& p2) {
|
||
|
C* tmp = array_;
|
||
|
array_ = p2.array_;
|
||
|
p2.array_ = tmp;
|
||
|
}
|
||
|
|
||
|
// Release an array.
|
||
|
// The return value is the current pointer held by this object.
|
||
|
// If this object holds a NULL pointer, the return value is NULL.
|
||
|
// After this operation, this object will hold a NULL pointer,
|
||
|
// and will not own the object any more.
|
||
|
C* release() {
|
||
|
C* retVal = array_;
|
||
|
array_ = NULL;
|
||
|
return retVal;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
C* array_;
|
||
|
|
||
|
// Forbid comparison of different scoped_array types.
|
||
|
template <class C2> bool operator==(scoped_array<C2> const& p2) const;
|
||
|
template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
|
||
|
|
||
|
// Disallow evil constructors
|
||
|
scoped_array(const scoped_array&);
|
||
|
void operator=(const scoped_array&);
|
||
|
};
|
||
|
|
||
|
// Free functions
|
||
|
template <class C>
|
||
|
inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
|
||
|
p1.swap(p2);
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator==(const C* p1, const scoped_array<C>& p2) {
|
||
|
return p1 == p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
|
||
|
return p1 == p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
|
||
|
return p1 != p2.get();
|
||
|
}
|
||
|
|
||
|
template <class C>
|
||
|
inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
|
||
|
return p1 != p2.get();
|
||
|
}
|
||
|
|
||
|
// This class wraps the c library function free() in a class that can be
|
||
|
// passed as a template argument to scoped_ptr_malloc below.
|
||
|
class ScopedPtrMallocFree {
|
||
|
public:
|
||
|
inline void operator()(void* x) const {
|
||
|
free(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
|