279 lines
10 KiB
C++
279 lines
10 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
|
||
|
#include "ceres/coordinate_descent_minimizer.h"
|
||
|
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
#include <iterator>
|
||
|
#include <numeric>
|
||
|
#include <vector>
|
||
|
#include "ceres/evaluator.h"
|
||
|
#include "ceres/linear_solver.h"
|
||
|
#include "ceres/minimizer.h"
|
||
|
#include "ceres/parameter_block.h"
|
||
|
#include "ceres/parameter_block_ordering.h"
|
||
|
#include "ceres/problem_impl.h"
|
||
|
#include "ceres/program.h"
|
||
|
#include "ceres/residual_block.h"
|
||
|
#include "ceres/solver.h"
|
||
|
#include "ceres/trust_region_minimizer.h"
|
||
|
#include "ceres/trust_region_strategy.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
using std::map;
|
||
|
using std::max;
|
||
|
using std::min;
|
||
|
using std::set;
|
||
|
using std::string;
|
||
|
using std::vector;
|
||
|
|
||
|
CoordinateDescentMinimizer::~CoordinateDescentMinimizer() {
|
||
|
}
|
||
|
|
||
|
bool CoordinateDescentMinimizer::Init(
|
||
|
const Program& program,
|
||
|
const ProblemImpl::ParameterMap& parameter_map,
|
||
|
const ParameterBlockOrdering& ordering,
|
||
|
string* error) {
|
||
|
parameter_blocks_.clear();
|
||
|
independent_set_offsets_.clear();
|
||
|
independent_set_offsets_.push_back(0);
|
||
|
|
||
|
// Serialize the OrderedGroups into a vector of parameter block
|
||
|
// offsets for parallel access.
|
||
|
map<ParameterBlock*, int> parameter_block_index;
|
||
|
map<int, set<double*> > group_to_elements = ordering.group_to_elements();
|
||
|
for (map<int, set<double*> >::const_iterator it = group_to_elements.begin();
|
||
|
it != group_to_elements.end();
|
||
|
++it) {
|
||
|
for (set<double*>::const_iterator ptr_it = it->second.begin();
|
||
|
ptr_it != it->second.end();
|
||
|
++ptr_it) {
|
||
|
parameter_blocks_.push_back(parameter_map.find(*ptr_it)->second);
|
||
|
parameter_block_index[parameter_blocks_.back()] =
|
||
|
parameter_blocks_.size() - 1;
|
||
|
}
|
||
|
independent_set_offsets_.push_back(
|
||
|
independent_set_offsets_.back() + it->second.size());
|
||
|
}
|
||
|
|
||
|
// The ordering does not have to contain all parameter blocks, so
|
||
|
// assign zero offsets/empty independent sets to these parameter
|
||
|
// blocks.
|
||
|
const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();
|
||
|
for (int i = 0; i < parameter_blocks.size(); ++i) {
|
||
|
if (!ordering.IsMember(parameter_blocks[i]->mutable_user_state())) {
|
||
|
parameter_blocks_.push_back(parameter_blocks[i]);
|
||
|
independent_set_offsets_.push_back(independent_set_offsets_.back());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute the set of residual blocks that depend on each parameter
|
||
|
// block.
|
||
|
residual_blocks_.resize(parameter_block_index.size());
|
||
|
const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
|
||
|
for (int i = 0; i < residual_blocks.size(); ++i) {
|
||
|
ResidualBlock* residual_block = residual_blocks[i];
|
||
|
const int num_parameter_blocks = residual_block->NumParameterBlocks();
|
||
|
for (int j = 0; j < num_parameter_blocks; ++j) {
|
||
|
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
|
||
|
const map<ParameterBlock*, int>::const_iterator it =
|
||
|
parameter_block_index.find(parameter_block);
|
||
|
if (it != parameter_block_index.end()) {
|
||
|
residual_blocks_[it->second].push_back(residual_block);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
evaluator_options_.linear_solver_type = DENSE_QR;
|
||
|
evaluator_options_.num_eliminate_blocks = 0;
|
||
|
evaluator_options_.num_threads = 1;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void CoordinateDescentMinimizer::Minimize(
|
||
|
const Minimizer::Options& options,
|
||
|
double* parameters,
|
||
|
Solver::Summary* summary) {
|
||
|
// Set the state and mark all parameter blocks constant.
|
||
|
for (int i = 0; i < parameter_blocks_.size(); ++i) {
|
||
|
ParameterBlock* parameter_block = parameter_blocks_[i];
|
||
|
parameter_block->SetState(parameters + parameter_block->state_offset());
|
||
|
parameter_block->SetConstant();
|
||
|
}
|
||
|
|
||
|
scoped_array<LinearSolver*> linear_solvers(
|
||
|
new LinearSolver*[options.num_threads]);
|
||
|
|
||
|
LinearSolver::Options linear_solver_options;
|
||
|
linear_solver_options.type = DENSE_QR;
|
||
|
|
||
|
for (int i = 0; i < options.num_threads; ++i) {
|
||
|
linear_solvers[i] = LinearSolver::Create(linear_solver_options);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < independent_set_offsets_.size() - 1; ++i) {
|
||
|
const int num_problems =
|
||
|
independent_set_offsets_[i + 1] - independent_set_offsets_[i];
|
||
|
// No point paying the price for an OpemMP call if the set is of
|
||
|
// size zero.
|
||
|
if (num_problems == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
const int num_inner_iteration_threads =
|
||
|
min(options.num_threads, num_problems);
|
||
|
evaluator_options_.num_threads =
|
||
|
max(1, options.num_threads / num_inner_iteration_threads);
|
||
|
|
||
|
// The parameter blocks in each independent set can be optimized
|
||
|
// in parallel, since they do not co-occur in any residual block.
|
||
|
#pragma omp parallel for num_threads(num_inner_iteration_threads)
|
||
|
#endif
|
||
|
for (int j = independent_set_offsets_[i];
|
||
|
j < independent_set_offsets_[i + 1];
|
||
|
++j) {
|
||
|
#ifdef CERES_USE_OPENMP
|
||
|
int thread_id = omp_get_thread_num();
|
||
|
#else
|
||
|
int thread_id = 0;
|
||
|
#endif
|
||
|
|
||
|
ParameterBlock* parameter_block = parameter_blocks_[j];
|
||
|
const int old_index = parameter_block->index();
|
||
|
const int old_delta_offset = parameter_block->delta_offset();
|
||
|
parameter_block->SetVarying();
|
||
|
parameter_block->set_index(0);
|
||
|
parameter_block->set_delta_offset(0);
|
||
|
|
||
|
Program inner_program;
|
||
|
inner_program.mutable_parameter_blocks()->push_back(parameter_block);
|
||
|
*inner_program.mutable_residual_blocks() = residual_blocks_[j];
|
||
|
|
||
|
// TODO(sameeragarwal): Better error handling. Right now we
|
||
|
// assume that this is not going to lead to problems of any
|
||
|
// sort. Basically we should be checking for numerical failure
|
||
|
// of some sort.
|
||
|
//
|
||
|
// On the other hand, if the optimization is a failure, that in
|
||
|
// some ways is fine, since it won't change the parameters and
|
||
|
// we are fine.
|
||
|
Solver::Summary inner_summary;
|
||
|
Solve(&inner_program,
|
||
|
linear_solvers[thread_id],
|
||
|
parameters + parameter_block->state_offset(),
|
||
|
&inner_summary);
|
||
|
|
||
|
parameter_block->set_index(old_index);
|
||
|
parameter_block->set_delta_offset(old_delta_offset);
|
||
|
parameter_block->SetState(parameters + parameter_block->state_offset());
|
||
|
parameter_block->SetConstant();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < parameter_blocks_.size(); ++i) {
|
||
|
parameter_blocks_[i]->SetVarying();
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < options.num_threads; ++i) {
|
||
|
delete linear_solvers[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Solve the optimization problem for one parameter block.
|
||
|
void CoordinateDescentMinimizer::Solve(Program* program,
|
||
|
LinearSolver* linear_solver,
|
||
|
double* parameter,
|
||
|
Solver::Summary* summary) {
|
||
|
*summary = Solver::Summary();
|
||
|
summary->initial_cost = 0.0;
|
||
|
summary->fixed_cost = 0.0;
|
||
|
summary->final_cost = 0.0;
|
||
|
string error;
|
||
|
|
||
|
Minimizer::Options minimizer_options;
|
||
|
minimizer_options.evaluator.reset(
|
||
|
CHECK_NOTNULL(Evaluator::Create(evaluator_options_, program, &error)));
|
||
|
minimizer_options.jacobian.reset(
|
||
|
CHECK_NOTNULL(minimizer_options.evaluator->CreateJacobian()));
|
||
|
|
||
|
TrustRegionStrategy::Options trs_options;
|
||
|
trs_options.linear_solver = linear_solver;
|
||
|
minimizer_options.trust_region_strategy.reset(
|
||
|
CHECK_NOTNULL(TrustRegionStrategy::Create(trs_options)));
|
||
|
minimizer_options.is_silent = true;
|
||
|
|
||
|
TrustRegionMinimizer minimizer;
|
||
|
minimizer.Minimize(minimizer_options, parameter, summary);
|
||
|
}
|
||
|
|
||
|
bool CoordinateDescentMinimizer::IsOrderingValid(
|
||
|
const Program& program,
|
||
|
const ParameterBlockOrdering& ordering,
|
||
|
string* message) {
|
||
|
const map<int, set<double*> >& group_to_elements =
|
||
|
ordering.group_to_elements();
|
||
|
|
||
|
// Verify that each group is an independent set
|
||
|
map<int, set<double*> >::const_iterator it = group_to_elements.begin();
|
||
|
for (; it != group_to_elements.end(); ++it) {
|
||
|
if (!program.IsParameterBlockSetIndependent(it->second)) {
|
||
|
*message =
|
||
|
StringPrintf("The user-provided "
|
||
|
"parameter_blocks_for_inner_iterations does not "
|
||
|
"form an independent set. Group Id: %d", it->first);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Find a recursive decomposition of the Hessian matrix as a set
|
||
|
// of independent sets of decreasing size and invert it. This
|
||
|
// seems to work better in practice, i.e., Cameras before
|
||
|
// points.
|
||
|
ParameterBlockOrdering* CoordinateDescentMinimizer::CreateOrdering(
|
||
|
const Program& program) {
|
||
|
scoped_ptr<ParameterBlockOrdering> ordering(new ParameterBlockOrdering);
|
||
|
ComputeRecursiveIndependentSetOrdering(program, ordering.get());
|
||
|
ordering->Reverse();
|
||
|
return ordering.release();
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|