221 lines
8.1 KiB
C++
221 lines
8.1 KiB
C++
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: strandmark@google.com (Petter Strandmark)
|
||
|
//
|
||
|
// Denoising using Fields of Experts and the Ceres minimizer.
|
||
|
//
|
||
|
// Note that for good denoising results the weighting between the data term
|
||
|
// and the Fields of Experts term needs to be adjusted. This is discussed
|
||
|
// in [1]. This program assumes Gaussian noise. The noise model can be changed
|
||
|
// by substituing another function for QuadraticCostFunction.
|
||
|
//
|
||
|
// [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
|
||
|
// Computer Vision, 82(2):205--229, 2009.
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
#include <sstream>
|
||
|
#include <string>
|
||
|
|
||
|
#include "ceres/ceres.h"
|
||
|
#include "gflags/gflags.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
#include "fields_of_experts.h"
|
||
|
#include "pgm_image.h"
|
||
|
|
||
|
DEFINE_string(input, "", "File to which the output image should be written");
|
||
|
DEFINE_string(foe_file, "", "FoE file to use");
|
||
|
DEFINE_string(output, "", "File to which the output image should be written");
|
||
|
DEFINE_double(sigma, 20.0, "Standard deviation of noise");
|
||
|
DEFINE_bool(verbose, false, "Prints information about the solver progress.");
|
||
|
DEFINE_bool(line_search, false, "Use a line search instead of trust region "
|
||
|
"algorithm.");
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace examples {
|
||
|
|
||
|
// This cost function is used to build the data term.
|
||
|
//
|
||
|
// f_i(x) = a * (x_i - b)^2
|
||
|
//
|
||
|
class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
|
||
|
public:
|
||
|
QuadraticCostFunction(double a, double b)
|
||
|
: sqrta_(std::sqrt(a)), b_(b) {}
|
||
|
virtual bool Evaluate(double const* const* parameters,
|
||
|
double* residuals,
|
||
|
double** jacobians) const {
|
||
|
const double x = parameters[0][0];
|
||
|
residuals[0] = sqrta_ * (x - b_);
|
||
|
if (jacobians != NULL && jacobians[0] != NULL) {
|
||
|
jacobians[0][0] = sqrta_;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
private:
|
||
|
double sqrta_, b_;
|
||
|
};
|
||
|
|
||
|
// Creates a Fields of Experts MAP inference problem.
|
||
|
void CreateProblem(const FieldsOfExperts& foe,
|
||
|
const PGMImage<double>& image,
|
||
|
Problem* problem,
|
||
|
PGMImage<double>* solution) {
|
||
|
// Create the data term
|
||
|
CHECK_GT(FLAGS_sigma, 0.0);
|
||
|
const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma);
|
||
|
for (unsigned index = 0; index < image.NumPixels(); ++index) {
|
||
|
ceres::CostFunction* cost_function =
|
||
|
new QuadraticCostFunction(coefficient,
|
||
|
image.PixelFromLinearIndex(index));
|
||
|
problem->AddResidualBlock(cost_function,
|
||
|
NULL,
|
||
|
solution->MutablePixelFromLinearIndex(index));
|
||
|
}
|
||
|
|
||
|
// Create Ceres cost and loss functions for regularization. One is needed for
|
||
|
// each filter.
|
||
|
std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());
|
||
|
std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());
|
||
|
for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
|
||
|
loss_function[alpha_index] = foe.NewLossFunction(alpha_index);
|
||
|
cost_function[alpha_index] = foe.NewCostFunction(alpha_index);
|
||
|
}
|
||
|
|
||
|
// Add FoE regularization for each patch in the image.
|
||
|
for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {
|
||
|
for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {
|
||
|
// Build a vector with the pixel indices of this patch.
|
||
|
std::vector<double*> pixels;
|
||
|
const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();
|
||
|
const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();
|
||
|
for (int i = 0; i < foe.NumVariables(); ++i) {
|
||
|
double* pixel = solution->MutablePixel(x + x_delta_indices[i],
|
||
|
y + y_delta_indices[i]);
|
||
|
pixels.push_back(pixel);
|
||
|
}
|
||
|
// For this patch with coordinates (x, y), we will add foe.NumFilters()
|
||
|
// terms to the objective function.
|
||
|
for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
|
||
|
problem->AddResidualBlock(cost_function[alpha_index],
|
||
|
loss_function[alpha_index],
|
||
|
pixels);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Solves the FoE problem using Ceres and post-processes it to make sure the
|
||
|
// solution stays within [0, 255].
|
||
|
void SolveProblem(Problem* problem, PGMImage<double>* solution) {
|
||
|
// These parameters may be experimented with. For example, ceres::DOGLEG tends
|
||
|
// to be faster for 2x2 filters, but gives solutions with slightly higher
|
||
|
// objective function value.
|
||
|
ceres::Solver::Options options;
|
||
|
options.max_num_iterations = 100;
|
||
|
if (FLAGS_verbose) {
|
||
|
options.minimizer_progress_to_stdout = true;
|
||
|
}
|
||
|
|
||
|
if (FLAGS_line_search) {
|
||
|
options.minimizer_type = ceres::LINE_SEARCH;
|
||
|
}
|
||
|
|
||
|
options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
|
||
|
options.function_tolerance = 1e-3; // Enough for denoising.
|
||
|
|
||
|
ceres::Solver::Summary summary;
|
||
|
ceres::Solve(options, problem, &summary);
|
||
|
if (FLAGS_verbose) {
|
||
|
std::cout << summary.FullReport() << "\n";
|
||
|
}
|
||
|
|
||
|
// Make the solution stay in [0, 255].
|
||
|
for (int x = 0; x < solution->width(); ++x) {
|
||
|
for (int y = 0; y < solution->height(); ++y) {
|
||
|
*solution->MutablePixel(x, y) =
|
||
|
std::min(255.0, std::max(0.0, solution->Pixel(x, y)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} // namespace examples
|
||
|
} // namespace ceres
|
||
|
|
||
|
int main(int argc, char** argv) {
|
||
|
using namespace ceres::examples;
|
||
|
std::string
|
||
|
usage("This program denoises an image using Ceres. Sample usage:\n");
|
||
|
usage += argv[0];
|
||
|
usage += " --input=<noisy image PGM file> --foe_file=<FoE file name>";
|
||
|
CERES_GFLAGS_NAMESPACE::SetUsageMessage(usage);
|
||
|
CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
|
||
|
google::InitGoogleLogging(argv[0]);
|
||
|
|
||
|
if (FLAGS_input.empty()) {
|
||
|
std::cerr << "Please provide an image file name.\n";
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (FLAGS_foe_file.empty()) {
|
||
|
std::cerr << "Please provide a Fields of Experts file name.\n";
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
// Load the Fields of Experts filters from file.
|
||
|
FieldsOfExperts foe;
|
||
|
if (!foe.LoadFromFile(FLAGS_foe_file)) {
|
||
|
std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n";
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
// Read the images
|
||
|
PGMImage<double> image(FLAGS_input);
|
||
|
if (image.width() == 0) {
|
||
|
std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n";
|
||
|
return 3;
|
||
|
}
|
||
|
PGMImage<double> solution(image.width(), image.height());
|
||
|
solution.Set(0.0);
|
||
|
|
||
|
ceres::Problem problem;
|
||
|
CreateProblem(foe, image, &problem, &solution);
|
||
|
|
||
|
SolveProblem(&problem, &solution);
|
||
|
|
||
|
if (!FLAGS_output.empty()) {
|
||
|
CHECK(solution.WriteToFile(FLAGS_output))
|
||
|
<< "Writing \"" << FLAGS_output << "\" failed.";
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|