328 lines
12 KiB
C
328 lines
12 KiB
C
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
//
|
||
|
// Interface for and implementation of various Line search algorithms.
|
||
|
|
||
|
#ifndef CERES_INTERNAL_LINE_SEARCH_H_
|
||
|
#define CERES_INTERNAL_LINE_SEARCH_H_
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include "ceres/internal/eigen.h"
|
||
|
#include "ceres/internal/port.h"
|
||
|
#include "ceres/types.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
class Evaluator;
|
||
|
struct FunctionSample;
|
||
|
class LineSearchFunction;
|
||
|
|
||
|
// Line search is another name for a one dimensional optimization
|
||
|
// algorithm. The name "line search" comes from the fact one
|
||
|
// dimensional optimization problems that arise as subproblems of
|
||
|
// general multidimensional optimization problems.
|
||
|
//
|
||
|
// While finding the exact minimum of a one dimensionl function is
|
||
|
// hard, instances of LineSearch find a point that satisfies a
|
||
|
// sufficient decrease condition. Depending on the particular
|
||
|
// condition used, we get a variety of different line search
|
||
|
// algorithms, e.g., Armijo, Wolfe etc.
|
||
|
class LineSearch {
|
||
|
public:
|
||
|
struct Summary;
|
||
|
|
||
|
struct Options {
|
||
|
Options()
|
||
|
: interpolation_type(CUBIC),
|
||
|
sufficient_decrease(1e-4),
|
||
|
max_step_contraction(1e-3),
|
||
|
min_step_contraction(0.9),
|
||
|
min_step_size(1e-9),
|
||
|
max_num_iterations(20),
|
||
|
sufficient_curvature_decrease(0.9),
|
||
|
max_step_expansion(10.0),
|
||
|
is_silent(false),
|
||
|
function(NULL) {}
|
||
|
|
||
|
// Degree of the polynomial used to approximate the objective
|
||
|
// function.
|
||
|
LineSearchInterpolationType interpolation_type;
|
||
|
|
||
|
// Armijo and Wolfe line search parameters.
|
||
|
|
||
|
// Solving the line search problem exactly is computationally
|
||
|
// prohibitive. Fortunately, line search based optimization
|
||
|
// algorithms can still guarantee convergence if instead of an
|
||
|
// exact solution, the line search algorithm returns a solution
|
||
|
// which decreases the value of the objective function
|
||
|
// sufficiently. More precisely, we are looking for a step_size
|
||
|
// s.t.
|
||
|
//
|
||
|
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
|
||
|
double sufficient_decrease;
|
||
|
|
||
|
// In each iteration of the Armijo / Wolfe line search,
|
||
|
//
|
||
|
// new_step_size >= max_step_contraction * step_size
|
||
|
//
|
||
|
// Note that by definition, for contraction:
|
||
|
//
|
||
|
// 0 < max_step_contraction < min_step_contraction < 1
|
||
|
//
|
||
|
double max_step_contraction;
|
||
|
|
||
|
// In each iteration of the Armijo / Wolfe line search,
|
||
|
//
|
||
|
// new_step_size <= min_step_contraction * step_size
|
||
|
// Note that by definition, for contraction:
|
||
|
//
|
||
|
// 0 < max_step_contraction < min_step_contraction < 1
|
||
|
//
|
||
|
double min_step_contraction;
|
||
|
|
||
|
// If during the line search, the step_size falls below this
|
||
|
// value, it is truncated to zero.
|
||
|
double min_step_size;
|
||
|
|
||
|
// Maximum number of trial step size iterations during each line search,
|
||
|
// if a step size satisfying the search conditions cannot be found within
|
||
|
// this number of trials, the line search will terminate.
|
||
|
int max_num_iterations;
|
||
|
|
||
|
// Wolfe-specific line search parameters.
|
||
|
|
||
|
// The strong Wolfe conditions consist of the Armijo sufficient
|
||
|
// decrease condition, and an additional requirement that the
|
||
|
// step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
|
||
|
// conditions) of the gradient along the search direction
|
||
|
// decreases sufficiently. Precisely, this second condition
|
||
|
// is that we seek a step_size s.t.
|
||
|
//
|
||
|
// |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
|
||
|
//
|
||
|
// Where f() is the line search objective and f'() is the derivative
|
||
|
// of f w.r.t step_size (d f / d step_size).
|
||
|
double sufficient_curvature_decrease;
|
||
|
|
||
|
// During the bracketing phase of the Wolfe search, the step size is
|
||
|
// increased until either a point satisfying the Wolfe conditions is
|
||
|
// found, or an upper bound for a bracket containing a point satisfying
|
||
|
// the conditions is found. Precisely, at each iteration of the
|
||
|
// expansion:
|
||
|
//
|
||
|
// new_step_size <= max_step_expansion * step_size.
|
||
|
//
|
||
|
// By definition for expansion, max_step_expansion > 1.0.
|
||
|
double max_step_expansion;
|
||
|
|
||
|
bool is_silent;
|
||
|
|
||
|
// The one dimensional function that the line search algorithm
|
||
|
// minimizes.
|
||
|
LineSearchFunction* function;
|
||
|
};
|
||
|
|
||
|
// Result of the line search.
|
||
|
struct Summary {
|
||
|
Summary()
|
||
|
: success(false),
|
||
|
optimal_step_size(0.0),
|
||
|
num_function_evaluations(0),
|
||
|
num_gradient_evaluations(0),
|
||
|
num_iterations(0),
|
||
|
cost_evaluation_time_in_seconds(-1.0),
|
||
|
gradient_evaluation_time_in_seconds(-1.0),
|
||
|
polynomial_minimization_time_in_seconds(-1.0),
|
||
|
total_time_in_seconds(-1.0) {}
|
||
|
|
||
|
bool success;
|
||
|
double optimal_step_size;
|
||
|
int num_function_evaluations;
|
||
|
int num_gradient_evaluations;
|
||
|
int num_iterations;
|
||
|
// Cumulative time spent evaluating the value of the cost function across
|
||
|
// all iterations.
|
||
|
double cost_evaluation_time_in_seconds;
|
||
|
// Cumulative time spent evaluating the gradient of the cost function across
|
||
|
// all iterations.
|
||
|
double gradient_evaluation_time_in_seconds;
|
||
|
// Cumulative time spent minimizing the interpolating polynomial to compute
|
||
|
// the next candidate step size across all iterations.
|
||
|
double polynomial_minimization_time_in_seconds;
|
||
|
double total_time_in_seconds;
|
||
|
std::string error;
|
||
|
};
|
||
|
|
||
|
explicit LineSearch(const LineSearch::Options& options);
|
||
|
virtual ~LineSearch() {}
|
||
|
|
||
|
static LineSearch* Create(const LineSearchType line_search_type,
|
||
|
const LineSearch::Options& options,
|
||
|
std::string* error);
|
||
|
|
||
|
// Perform the line search.
|
||
|
//
|
||
|
// step_size_estimate must be a positive number.
|
||
|
//
|
||
|
// initial_cost and initial_gradient are the values and gradient of
|
||
|
// the function at zero.
|
||
|
// summary must not be null and will contain the result of the line
|
||
|
// search.
|
||
|
//
|
||
|
// Summary::success is true if a non-zero step size is found.
|
||
|
void Search(double step_size_estimate,
|
||
|
double initial_cost,
|
||
|
double initial_gradient,
|
||
|
Summary* summary) const;
|
||
|
double InterpolatingPolynomialMinimizingStepSize(
|
||
|
const LineSearchInterpolationType& interpolation_type,
|
||
|
const FunctionSample& lowerbound_sample,
|
||
|
const FunctionSample& previous_sample,
|
||
|
const FunctionSample& current_sample,
|
||
|
const double min_step_size,
|
||
|
const double max_step_size) const;
|
||
|
|
||
|
protected:
|
||
|
const LineSearch::Options& options() const { return options_; }
|
||
|
|
||
|
private:
|
||
|
virtual void DoSearch(double step_size_estimate,
|
||
|
double initial_cost,
|
||
|
double initial_gradient,
|
||
|
Summary* summary) const = 0;
|
||
|
|
||
|
private:
|
||
|
LineSearch::Options options_;
|
||
|
};
|
||
|
|
||
|
// An object used by the line search to access the function values
|
||
|
// and gradient of the one dimensional function being optimized.
|
||
|
//
|
||
|
// In practice, this object provides access to the objective
|
||
|
// function value and the directional derivative of the underlying
|
||
|
// optimization problem along a specific search direction.
|
||
|
class LineSearchFunction {
|
||
|
public:
|
||
|
explicit LineSearchFunction(Evaluator* evaluator);
|
||
|
void Init(const Vector& position, const Vector& direction);
|
||
|
// Evaluate the line search objective
|
||
|
//
|
||
|
// f(x) = p(position + x * direction)
|
||
|
//
|
||
|
// Where, p is the objective function of the general optimization
|
||
|
// problem.
|
||
|
//
|
||
|
// g is the gradient f'(x) at x.
|
||
|
//
|
||
|
// f must not be null. The gradient is computed only if g is not null.
|
||
|
bool Evaluate(double x, double* f, double* g);
|
||
|
double DirectionInfinityNorm() const;
|
||
|
// Resets to now, the start point for the results from TimeStatistics().
|
||
|
void ResetTimeStatistics();
|
||
|
void TimeStatistics(double* cost_evaluation_time_in_seconds,
|
||
|
double* gradient_evaluation_time_in_seconds) const;
|
||
|
|
||
|
private:
|
||
|
Evaluator* evaluator_;
|
||
|
Vector position_;
|
||
|
Vector direction_;
|
||
|
|
||
|
// evaluation_point = Evaluator::Plus(position_, x * direction_);
|
||
|
Vector evaluation_point_;
|
||
|
|
||
|
// scaled_direction = x * direction_;
|
||
|
Vector scaled_direction_;
|
||
|
Vector gradient_;
|
||
|
|
||
|
// We may not exclusively own the evaluator (e.g. in the Trust Region
|
||
|
// minimizer), hence we need to save the initial evaluation durations for the
|
||
|
// value & gradient to accurately determine the duration of the evaluations
|
||
|
// we invoked. These are reset by a call to ResetTimeStatistics().
|
||
|
double initial_evaluator_residual_time_in_seconds;
|
||
|
double initial_evaluator_jacobian_time_in_seconds;
|
||
|
};
|
||
|
|
||
|
// Backtracking and interpolation based Armijo line search. This
|
||
|
// implementation is based on the Armijo line search that ships in the
|
||
|
// minFunc package by Mark Schmidt.
|
||
|
//
|
||
|
// For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
|
||
|
class ArmijoLineSearch : public LineSearch {
|
||
|
public:
|
||
|
explicit ArmijoLineSearch(const LineSearch::Options& options);
|
||
|
virtual ~ArmijoLineSearch() {}
|
||
|
|
||
|
private:
|
||
|
virtual void DoSearch(double step_size_estimate,
|
||
|
double initial_cost,
|
||
|
double initial_gradient,
|
||
|
Summary* summary) const;
|
||
|
};
|
||
|
|
||
|
// Bracketing / Zoom Strong Wolfe condition line search. This implementation
|
||
|
// is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
|
||
|
// (p60-61) with inspiration from the WolfeLineSearch which ships with the
|
||
|
// minFunc package by Mark Schmidt [2].
|
||
|
//
|
||
|
// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
|
||
|
// [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
|
||
|
class WolfeLineSearch : public LineSearch {
|
||
|
public:
|
||
|
explicit WolfeLineSearch(const LineSearch::Options& options);
|
||
|
virtual ~WolfeLineSearch() {}
|
||
|
|
||
|
// Returns true iff either a valid point, or valid bracket are found.
|
||
|
bool BracketingPhase(const FunctionSample& initial_position,
|
||
|
const double step_size_estimate,
|
||
|
FunctionSample* bracket_low,
|
||
|
FunctionSample* bracket_high,
|
||
|
bool* perform_zoom_search,
|
||
|
Summary* summary) const;
|
||
|
// Returns true iff final_line_sample satisfies strong Wolfe conditions.
|
||
|
bool ZoomPhase(const FunctionSample& initial_position,
|
||
|
FunctionSample bracket_low,
|
||
|
FunctionSample bracket_high,
|
||
|
FunctionSample* solution,
|
||
|
Summary* summary) const;
|
||
|
|
||
|
private:
|
||
|
virtual void DoSearch(double step_size_estimate,
|
||
|
double initial_cost,
|
||
|
double initial_gradient,
|
||
|
Summary* summary) const;
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#endif // CERES_INTERNAL_LINE_SEARCH_H_
|