612 lines
21 KiB
C
612 lines
21 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
|
||
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_LDLT_H
|
||
|
#define EIGEN_LDLT_H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
namespace internal {
|
||
|
template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||
|
|
||
|
// PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
|
||
|
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
|
||
|
}
|
||
|
|
||
|
/** \ingroup Cholesky_Module
|
||
|
*
|
||
|
* \class LDLT
|
||
|
*
|
||
|
* \brief Robust Cholesky decomposition of a matrix with pivoting
|
||
|
*
|
||
|
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
|
||
|
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||
|
* The other triangular part won't be read.
|
||
|
*
|
||
|
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
|
||
|
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
|
||
|
* is lower triangular with a unit diagonal and D is a diagonal matrix.
|
||
|
*
|
||
|
* The decomposition uses pivoting to ensure stability, so that L will have
|
||
|
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
|
||
|
* on D also stabilizes the computation.
|
||
|
*
|
||
|
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
|
||
|
* decomposition to determine whether a system of equations has a solution.
|
||
|
*
|
||
|
* \sa MatrixBase::ldlt(), class LLT
|
||
|
*/
|
||
|
template<typename _MatrixType, int _UpLo> class LDLT
|
||
|
{
|
||
|
public:
|
||
|
typedef _MatrixType MatrixType;
|
||
|
enum {
|
||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||
|
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
|
||
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||
|
UpLo = _UpLo
|
||
|
};
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
|
||
|
|
||
|
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
||
|
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
|
||
|
|
||
|
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
|
||
|
|
||
|
/** \brief Default Constructor.
|
||
|
*
|
||
|
* The default constructor is useful in cases in which the user intends to
|
||
|
* perform decompositions via LDLT::compute(const MatrixType&).
|
||
|
*/
|
||
|
LDLT()
|
||
|
: m_matrix(),
|
||
|
m_transpositions(),
|
||
|
m_sign(internal::ZeroSign),
|
||
|
m_isInitialized(false)
|
||
|
{}
|
||
|
|
||
|
/** \brief Default Constructor with memory preallocation
|
||
|
*
|
||
|
* Like the default constructor but with preallocation of the internal data
|
||
|
* according to the specified problem \a size.
|
||
|
* \sa LDLT()
|
||
|
*/
|
||
|
LDLT(Index size)
|
||
|
: m_matrix(size, size),
|
||
|
m_transpositions(size),
|
||
|
m_temporary(size),
|
||
|
m_sign(internal::ZeroSign),
|
||
|
m_isInitialized(false)
|
||
|
{}
|
||
|
|
||
|
/** \brief Constructor with decomposition
|
||
|
*
|
||
|
* This calculates the decomposition for the input \a matrix.
|
||
|
* \sa LDLT(Index size)
|
||
|
*/
|
||
|
LDLT(const MatrixType& matrix)
|
||
|
: m_matrix(matrix.rows(), matrix.cols()),
|
||
|
m_transpositions(matrix.rows()),
|
||
|
m_temporary(matrix.rows()),
|
||
|
m_sign(internal::ZeroSign),
|
||
|
m_isInitialized(false)
|
||
|
{
|
||
|
compute(matrix);
|
||
|
}
|
||
|
|
||
|
/** Clear any existing decomposition
|
||
|
* \sa rankUpdate(w,sigma)
|
||
|
*/
|
||
|
void setZero()
|
||
|
{
|
||
|
m_isInitialized = false;
|
||
|
}
|
||
|
|
||
|
/** \returns a view of the upper triangular matrix U */
|
||
|
inline typename Traits::MatrixU matrixU() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return Traits::getU(m_matrix);
|
||
|
}
|
||
|
|
||
|
/** \returns a view of the lower triangular matrix L */
|
||
|
inline typename Traits::MatrixL matrixL() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return Traits::getL(m_matrix);
|
||
|
}
|
||
|
|
||
|
/** \returns the permutation matrix P as a transposition sequence.
|
||
|
*/
|
||
|
inline const TranspositionType& transpositionsP() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return m_transpositions;
|
||
|
}
|
||
|
|
||
|
/** \returns the coefficients of the diagonal matrix D */
|
||
|
inline Diagonal<const MatrixType> vectorD() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return m_matrix.diagonal();
|
||
|
}
|
||
|
|
||
|
/** \returns true if the matrix is positive (semidefinite) */
|
||
|
inline bool isPositive() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
|
||
|
}
|
||
|
|
||
|
#ifdef EIGEN2_SUPPORT
|
||
|
inline bool isPositiveDefinite() const
|
||
|
{
|
||
|
return isPositive();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/** \returns true if the matrix is negative (semidefinite) */
|
||
|
inline bool isNegative(void) const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
|
||
|
}
|
||
|
|
||
|
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||
|
*
|
||
|
* This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
|
||
|
*
|
||
|
* \note_about_checking_solutions
|
||
|
*
|
||
|
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
|
||
|
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
|
||
|
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
|
||
|
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
|
||
|
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
|
||
|
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
|
||
|
*
|
||
|
* \sa MatrixBase::ldlt()
|
||
|
*/
|
||
|
template<typename Rhs>
|
||
|
inline const internal::solve_retval<LDLT, Rhs>
|
||
|
solve(const MatrixBase<Rhs>& b) const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
eigen_assert(m_matrix.rows()==b.rows()
|
||
|
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
|
||
|
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
|
||
|
}
|
||
|
|
||
|
#ifdef EIGEN2_SUPPORT
|
||
|
template<typename OtherDerived, typename ResultType>
|
||
|
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
|
||
|
{
|
||
|
*result = this->solve(b);
|
||
|
return true;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
template<typename Derived>
|
||
|
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||
|
|
||
|
LDLT& compute(const MatrixType& matrix);
|
||
|
|
||
|
template <typename Derived>
|
||
|
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
|
||
|
|
||
|
/** \returns the internal LDLT decomposition matrix
|
||
|
*
|
||
|
* TODO: document the storage layout
|
||
|
*/
|
||
|
inline const MatrixType& matrixLDLT() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return m_matrix;
|
||
|
}
|
||
|
|
||
|
MatrixType reconstructedMatrix() const;
|
||
|
|
||
|
inline Index rows() const { return m_matrix.rows(); }
|
||
|
inline Index cols() const { return m_matrix.cols(); }
|
||
|
|
||
|
/** \brief Reports whether previous computation was successful.
|
||
|
*
|
||
|
* \returns \c Success if computation was succesful,
|
||
|
* \c NumericalIssue if the matrix.appears to be negative.
|
||
|
*/
|
||
|
ComputationInfo info() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
return Success;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
|
||
|
static void check_template_parameters()
|
||
|
{
|
||
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||
|
}
|
||
|
|
||
|
/** \internal
|
||
|
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
|
||
|
* The strict upper part is used during the decomposition, the strict lower
|
||
|
* part correspond to the coefficients of L (its diagonal is equal to 1 and
|
||
|
* is not stored), and the diagonal entries correspond to D.
|
||
|
*/
|
||
|
MatrixType m_matrix;
|
||
|
TranspositionType m_transpositions;
|
||
|
TmpMatrixType m_temporary;
|
||
|
internal::SignMatrix m_sign;
|
||
|
bool m_isInitialized;
|
||
|
};
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template<int UpLo> struct ldlt_inplace;
|
||
|
|
||
|
template<> struct ldlt_inplace<Lower>
|
||
|
{
|
||
|
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||
|
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
|
||
|
{
|
||
|
using std::abs;
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
eigen_assert(mat.rows()==mat.cols());
|
||
|
const Index size = mat.rows();
|
||
|
|
||
|
if (size <= 1)
|
||
|
{
|
||
|
transpositions.setIdentity();
|
||
|
if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
|
||
|
else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
|
||
|
else sign = ZeroSign;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
for (Index k = 0; k < size; ++k)
|
||
|
{
|
||
|
// Find largest diagonal element
|
||
|
Index index_of_biggest_in_corner;
|
||
|
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||
|
index_of_biggest_in_corner += k;
|
||
|
|
||
|
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||
|
if(k != index_of_biggest_in_corner)
|
||
|
{
|
||
|
// apply the transposition while taking care to consider only
|
||
|
// the lower triangular part
|
||
|
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
|
||
|
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
|
||
|
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
|
||
|
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
|
||
|
for(int i=k+1;i<index_of_biggest_in_corner;++i)
|
||
|
{
|
||
|
Scalar tmp = mat.coeffRef(i,k);
|
||
|
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
|
||
|
mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
|
||
|
}
|
||
|
if(NumTraits<Scalar>::IsComplex)
|
||
|
mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
|
||
|
}
|
||
|
|
||
|
// partition the matrix:
|
||
|
// A00 | - | -
|
||
|
// lu = A10 | A11 | -
|
||
|
// A20 | A21 | A22
|
||
|
Index rs = size - k - 1;
|
||
|
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
|
||
|
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
|
||
|
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
|
||
|
|
||
|
if(k>0)
|
||
|
{
|
||
|
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
|
||
|
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||
|
if(rs>0)
|
||
|
A21.noalias() -= A20 * temp.head(k);
|
||
|
}
|
||
|
|
||
|
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
|
||
|
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
|
||
|
// we should only make sure we do not introduce INF or NaN values.
|
||
|
// LAPACK also uses 0 as the cutoff value.
|
||
|
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
|
||
|
if((rs>0) && (abs(realAkk) > RealScalar(0)))
|
||
|
A21 /= realAkk;
|
||
|
|
||
|
if (sign == PositiveSemiDef) {
|
||
|
if (realAkk < 0) sign = Indefinite;
|
||
|
} else if (sign == NegativeSemiDef) {
|
||
|
if (realAkk > 0) sign = Indefinite;
|
||
|
} else if (sign == ZeroSign) {
|
||
|
if (realAkk > 0) sign = PositiveSemiDef;
|
||
|
else if (realAkk < 0) sign = NegativeSemiDef;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Reference for the algorithm: Davis and Hager, "Multiple Rank
|
||
|
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
|
||
|
// Trivial rearrangements of their computations (Timothy E. Holy)
|
||
|
// allow their algorithm to work for rank-1 updates even if the
|
||
|
// original matrix is not of full rank.
|
||
|
// Here only rank-1 updates are implemented, to reduce the
|
||
|
// requirement for intermediate storage and improve accuracy
|
||
|
template<typename MatrixType, typename WDerived>
|
||
|
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
|
||
|
{
|
||
|
using numext::isfinite;
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
|
||
|
const Index size = mat.rows();
|
||
|
eigen_assert(mat.cols() == size && w.size()==size);
|
||
|
|
||
|
RealScalar alpha = 1;
|
||
|
|
||
|
// Apply the update
|
||
|
for (Index j = 0; j < size; j++)
|
||
|
{
|
||
|
// Check for termination due to an original decomposition of low-rank
|
||
|
if (!(isfinite)(alpha))
|
||
|
break;
|
||
|
|
||
|
// Update the diagonal terms
|
||
|
RealScalar dj = numext::real(mat.coeff(j,j));
|
||
|
Scalar wj = w.coeff(j);
|
||
|
RealScalar swj2 = sigma*numext::abs2(wj);
|
||
|
RealScalar gamma = dj*alpha + swj2;
|
||
|
|
||
|
mat.coeffRef(j,j) += swj2/alpha;
|
||
|
alpha += swj2/dj;
|
||
|
|
||
|
|
||
|
// Update the terms of L
|
||
|
Index rs = size-j-1;
|
||
|
w.tail(rs) -= wj * mat.col(j).tail(rs);
|
||
|
if(gamma != 0)
|
||
|
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||
|
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
|
||
|
{
|
||
|
// Apply the permutation to the input w
|
||
|
tmp = transpositions * w;
|
||
|
|
||
|
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<> struct ldlt_inplace<Upper>
|
||
|
{
|
||
|
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||
|
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
|
||
|
{
|
||
|
Transpose<MatrixType> matt(mat);
|
||
|
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||
|
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
|
||
|
{
|
||
|
Transpose<MatrixType> matt(mat);
|
||
|
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
|
||
|
{
|
||
|
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
|
||
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
|
||
|
static inline MatrixL getL(const MatrixType& m) { return m; }
|
||
|
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||
|
};
|
||
|
|
||
|
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
|
||
|
{
|
||
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
|
||
|
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
|
||
|
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
|
||
|
static inline MatrixU getU(const MatrixType& m) { return m; }
|
||
|
};
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
|
||
|
*/
|
||
|
template<typename MatrixType, int _UpLo>
|
||
|
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||
|
{
|
||
|
check_template_parameters();
|
||
|
|
||
|
eigen_assert(a.rows()==a.cols());
|
||
|
const Index size = a.rows();
|
||
|
|
||
|
m_matrix = a;
|
||
|
|
||
|
m_transpositions.resize(size);
|
||
|
m_isInitialized = false;
|
||
|
m_temporary.resize(size);
|
||
|
m_sign = internal::ZeroSign;
|
||
|
|
||
|
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
|
||
|
|
||
|
m_isInitialized = true;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
|
||
|
* \param w a vector to be incorporated into the decomposition.
|
||
|
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
|
||
|
* \sa setZero()
|
||
|
*/
|
||
|
template<typename MatrixType, int _UpLo>
|
||
|
template<typename Derived>
|
||
|
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
|
||
|
{
|
||
|
const Index size = w.rows();
|
||
|
if (m_isInitialized)
|
||
|
{
|
||
|
eigen_assert(m_matrix.rows()==size);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_matrix.resize(size,size);
|
||
|
m_matrix.setZero();
|
||
|
m_transpositions.resize(size);
|
||
|
for (Index i = 0; i < size; i++)
|
||
|
m_transpositions.coeffRef(i) = i;
|
||
|
m_temporary.resize(size);
|
||
|
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
|
||
|
m_isInitialized = true;
|
||
|
}
|
||
|
|
||
|
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
namespace internal {
|
||
|
template<typename _MatrixType, int _UpLo, typename Rhs>
|
||
|
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
||
|
: solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
|
||
|
{
|
||
|
typedef LDLT<_MatrixType,_UpLo> LDLTType;
|
||
|
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
|
||
|
|
||
|
template<typename Dest> void evalTo(Dest& dst) const
|
||
|
{
|
||
|
eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
|
||
|
// dst = P b
|
||
|
dst = dec().transpositionsP() * rhs();
|
||
|
|
||
|
// dst = L^-1 (P b)
|
||
|
dec().matrixL().solveInPlace(dst);
|
||
|
|
||
|
// dst = D^-1 (L^-1 P b)
|
||
|
// more precisely, use pseudo-inverse of D (see bug 241)
|
||
|
using std::abs;
|
||
|
using std::max;
|
||
|
typedef typename LDLTType::MatrixType MatrixType;
|
||
|
typedef typename LDLTType::RealScalar RealScalar;
|
||
|
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||
|
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||
|
// as motivated by LAPACK's xGELSS:
|
||
|
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||
|
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||
|
// diagonal element is not well justified and to numerical issues in some cases.
|
||
|
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||
|
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||
|
|
||
|
for (Index i = 0; i < vectorD.size(); ++i) {
|
||
|
if(abs(vectorD(i)) > tolerance)
|
||
|
dst.row(i) /= vectorD(i);
|
||
|
else
|
||
|
dst.row(i).setZero();
|
||
|
}
|
||
|
|
||
|
// dst = L^-T (D^-1 L^-1 P b)
|
||
|
dec().matrixU().solveInPlace(dst);
|
||
|
|
||
|
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
|
||
|
dst = dec().transpositionsP().transpose() * dst;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/** \internal use x = ldlt_object.solve(x);
|
||
|
*
|
||
|
* This is the \em in-place version of solve().
|
||
|
*
|
||
|
* \param bAndX represents both the right-hand side matrix b and result x.
|
||
|
*
|
||
|
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||
|
*
|
||
|
* This version avoids a copy when the right hand side matrix b is not
|
||
|
* needed anymore.
|
||
|
*
|
||
|
* \sa LDLT::solve(), MatrixBase::ldlt()
|
||
|
*/
|
||
|
template<typename MatrixType,int _UpLo>
|
||
|
template<typename Derived>
|
||
|
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
eigen_assert(m_matrix.rows() == bAndX.rows());
|
||
|
|
||
|
bAndX = this->solve(bAndX);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/** \returns the matrix represented by the decomposition,
|
||
|
* i.e., it returns the product: P^T L D L^* P.
|
||
|
* This function is provided for debug purpose. */
|
||
|
template<typename MatrixType, int _UpLo>
|
||
|
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||
|
const Index size = m_matrix.rows();
|
||
|
MatrixType res(size,size);
|
||
|
|
||
|
// P
|
||
|
res.setIdentity();
|
||
|
res = transpositionsP() * res;
|
||
|
// L^* P
|
||
|
res = matrixU() * res;
|
||
|
// D(L^*P)
|
||
|
res = vectorD().real().asDiagonal() * res;
|
||
|
// L(DL^*P)
|
||
|
res = matrixL() * res;
|
||
|
// P^T (LDL^*P)
|
||
|
res = transpositionsP().transpose() * res;
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/** \cholesky_module
|
||
|
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
|
||
|
*/
|
||
|
template<typename MatrixType, unsigned int UpLo>
|
||
|
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
|
||
|
SelfAdjointView<MatrixType, UpLo>::ldlt() const
|
||
|
{
|
||
|
return LDLT<PlainObject,UpLo>(m_matrix);
|
||
|
}
|
||
|
|
||
|
/** \cholesky_module
|
||
|
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
|
||
|
*/
|
||
|
template<typename Derived>
|
||
|
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
|
||
|
MatrixBase<Derived>::ldlt() const
|
||
|
{
|
||
|
return LDLT<PlainObject>(derived());
|
||
|
}
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_LDLT_H
|