802 lines
30 KiB
C
802 lines
30 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
|
||
|
#define EIGEN_SELFADJOINTEIGENSOLVER_H
|
||
|
|
||
|
#include "./Tridiagonalization.h"
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
template<typename _MatrixType>
|
||
|
class GeneralizedSelfAdjointEigenSolver;
|
||
|
|
||
|
namespace internal {
|
||
|
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
|
||
|
}
|
||
|
|
||
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||
|
*
|
||
|
*
|
||
|
* \class SelfAdjointEigenSolver
|
||
|
*
|
||
|
* \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
|
||
|
*
|
||
|
* \tparam _MatrixType the type of the matrix of which we are computing the
|
||
|
* eigendecomposition; this is expected to be an instantiation of the Matrix
|
||
|
* class template.
|
||
|
*
|
||
|
* A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
|
||
|
* matrices, this means that the matrix is symmetric: it equals its
|
||
|
* transpose. This class computes the eigenvalues and eigenvectors of a
|
||
|
* selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
|
||
|
* \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
|
||
|
* selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
|
||
|
* the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
|
||
|
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
|
||
|
* matrices, the matrix \f$ V \f$ is always invertible). This is called the
|
||
|
* eigendecomposition.
|
||
|
*
|
||
|
* The algorithm exploits the fact that the matrix is selfadjoint, making it
|
||
|
* faster and more accurate than the general purpose eigenvalue algorithms
|
||
|
* implemented in EigenSolver and ComplexEigenSolver.
|
||
|
*
|
||
|
* Only the \b lower \b triangular \b part of the input matrix is referenced.
|
||
|
*
|
||
|
* Call the function compute() to compute the eigenvalues and eigenvectors of
|
||
|
* a given matrix. Alternatively, you can use the
|
||
|
* SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
|
||
|
* the eigenvalues and eigenvectors at construction time. Once the eigenvalue
|
||
|
* and eigenvectors are computed, they can be retrieved with the eigenvalues()
|
||
|
* and eigenvectors() functions.
|
||
|
*
|
||
|
* The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
|
||
|
* contains an example of the typical use of this class.
|
||
|
*
|
||
|
* To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
|
||
|
* the likes, see the class GeneralizedSelfAdjointEigenSolver.
|
||
|
*
|
||
|
* \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
|
||
|
*/
|
||
|
template<typename _MatrixType> class SelfAdjointEigenSolver
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef _MatrixType MatrixType;
|
||
|
enum {
|
||
|
Size = MatrixType::RowsAtCompileTime,
|
||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||
|
Options = MatrixType::Options,
|
||
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||
|
};
|
||
|
|
||
|
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
|
||
|
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
|
||
|
|
||
|
/** \brief Real scalar type for \p _MatrixType.
|
||
|
*
|
||
|
* This is just \c Scalar if #Scalar is real (e.g., \c float or
|
||
|
* \c double), and the type of the real part of \c Scalar if #Scalar is
|
||
|
* complex.
|
||
|
*/
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
|
||
|
friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
|
||
|
|
||
|
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||
|
*
|
||
|
* This is a column vector with entries of type #RealScalar.
|
||
|
* The length of the vector is the size of \p _MatrixType.
|
||
|
*/
|
||
|
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
|
||
|
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
|
||
|
|
||
|
/** \brief Default constructor for fixed-size matrices.
|
||
|
*
|
||
|
* The default constructor is useful in cases in which the user intends to
|
||
|
* perform decompositions via compute(). This constructor
|
||
|
* can only be used if \p _MatrixType is a fixed-size matrix; use
|
||
|
* SelfAdjointEigenSolver(Index) for dynamic-size matrices.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
|
||
|
*/
|
||
|
SelfAdjointEigenSolver()
|
||
|
: m_eivec(),
|
||
|
m_eivalues(),
|
||
|
m_subdiag(),
|
||
|
m_isInitialized(false)
|
||
|
{ }
|
||
|
|
||
|
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
|
||
|
*
|
||
|
* \param [in] size Positive integer, size of the matrix whose
|
||
|
* eigenvalues and eigenvectors will be computed.
|
||
|
*
|
||
|
* This constructor is useful for dynamic-size matrices, when the user
|
||
|
* intends to perform decompositions via compute(). The \p size
|
||
|
* parameter is only used as a hint. It is not an error to give a wrong
|
||
|
* \p size, but it may impair performance.
|
||
|
*
|
||
|
* \sa compute() for an example
|
||
|
*/
|
||
|
SelfAdjointEigenSolver(Index size)
|
||
|
: m_eivec(size, size),
|
||
|
m_eivalues(size),
|
||
|
m_subdiag(size > 1 ? size - 1 : 1),
|
||
|
m_isInitialized(false)
|
||
|
{}
|
||
|
|
||
|
/** \brief Constructor; computes eigendecomposition of given matrix.
|
||
|
*
|
||
|
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
|
||
|
* be computed. Only the lower triangular part of the matrix is referenced.
|
||
|
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
|
||
|
*
|
||
|
* This constructor calls compute(const MatrixType&, int) to compute the
|
||
|
* eigenvalues of the matrix \p matrix. The eigenvectors are computed if
|
||
|
* \p options equals #ComputeEigenvectors.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
|
||
|
*
|
||
|
* \sa compute(const MatrixType&, int)
|
||
|
*/
|
||
|
SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
|
||
|
: m_eivec(matrix.rows(), matrix.cols()),
|
||
|
m_eivalues(matrix.cols()),
|
||
|
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
|
||
|
m_isInitialized(false)
|
||
|
{
|
||
|
compute(matrix, options);
|
||
|
}
|
||
|
|
||
|
/** \brief Computes eigendecomposition of given matrix.
|
||
|
*
|
||
|
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
|
||
|
* be computed. Only the lower triangular part of the matrix is referenced.
|
||
|
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
|
||
|
* \returns Reference to \c *this
|
||
|
*
|
||
|
* This function computes the eigenvalues of \p matrix. The eigenvalues()
|
||
|
* function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
|
||
|
* then the eigenvectors are also computed and can be retrieved by
|
||
|
* calling eigenvectors().
|
||
|
*
|
||
|
* This implementation uses a symmetric QR algorithm. The matrix is first
|
||
|
* reduced to tridiagonal form using the Tridiagonalization class. The
|
||
|
* tridiagonal matrix is then brought to diagonal form with implicit
|
||
|
* symmetric QR steps with Wilkinson shift. Details can be found in
|
||
|
* Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
|
||
|
*
|
||
|
* The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
|
||
|
* are required and \f$ 4n^3/3 \f$ if they are not required.
|
||
|
*
|
||
|
* This method reuses the memory in the SelfAdjointEigenSolver object that
|
||
|
* was allocated when the object was constructed, if the size of the
|
||
|
* matrix does not change.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
|
||
|
*
|
||
|
* \sa SelfAdjointEigenSolver(const MatrixType&, int)
|
||
|
*/
|
||
|
SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
|
||
|
|
||
|
/** \brief Computes eigendecomposition of given matrix using a direct algorithm
|
||
|
*
|
||
|
* This is a variant of compute(const MatrixType&, int options) which
|
||
|
* directly solves the underlying polynomial equation.
|
||
|
*
|
||
|
* Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
|
||
|
*
|
||
|
* This method is usually significantly faster than the QR algorithm
|
||
|
* but it might also be less accurate. It is also worth noting that
|
||
|
* for 3x3 matrices it involves trigonometric operations which are
|
||
|
* not necessarily available for all scalar types.
|
||
|
*
|
||
|
* \sa compute(const MatrixType&, int options)
|
||
|
*/
|
||
|
SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
|
||
|
|
||
|
/** \brief Returns the eigenvectors of given matrix.
|
||
|
*
|
||
|
* \returns A const reference to the matrix whose columns are the eigenvectors.
|
||
|
*
|
||
|
* \pre The eigenvectors have been computed before.
|
||
|
*
|
||
|
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
||
|
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
||
|
* eigenvectors are normalized to have (Euclidean) norm equal to one. If
|
||
|
* this object was used to solve the eigenproblem for the selfadjoint
|
||
|
* matrix \f$ A \f$, then the matrix returned by this function is the
|
||
|
* matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
|
||
|
*
|
||
|
* \sa eigenvalues()
|
||
|
*/
|
||
|
const EigenvectorsType& eigenvectors() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
||
|
return m_eivec;
|
||
|
}
|
||
|
|
||
|
/** \brief Returns the eigenvalues of given matrix.
|
||
|
*
|
||
|
* \returns A const reference to the column vector containing the eigenvalues.
|
||
|
*
|
||
|
* \pre The eigenvalues have been computed before.
|
||
|
*
|
||
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
||
|
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
||
|
* are sorted in increasing order.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
|
||
|
*
|
||
|
* \sa eigenvectors(), MatrixBase::eigenvalues()
|
||
|
*/
|
||
|
const RealVectorType& eigenvalues() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||
|
return m_eivalues;
|
||
|
}
|
||
|
|
||
|
/** \brief Computes the positive-definite square root of the matrix.
|
||
|
*
|
||
|
* \returns the positive-definite square root of the matrix
|
||
|
*
|
||
|
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
|
||
|
* have been computed before.
|
||
|
*
|
||
|
* The square root of a positive-definite matrix \f$ A \f$ is the
|
||
|
* positive-definite matrix whose square equals \f$ A \f$. This function
|
||
|
* uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
|
||
|
* square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
|
||
|
*
|
||
|
* \sa operatorInverseSqrt(),
|
||
|
* \ref MatrixFunctions_Module "MatrixFunctions Module"
|
||
|
*/
|
||
|
MatrixType operatorSqrt() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
||
|
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
||
|
}
|
||
|
|
||
|
/** \brief Computes the inverse square root of the matrix.
|
||
|
*
|
||
|
* \returns the inverse positive-definite square root of the matrix
|
||
|
*
|
||
|
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
|
||
|
* have been computed before.
|
||
|
*
|
||
|
* This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
|
||
|
* compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
|
||
|
* cheaper than first computing the square root with operatorSqrt() and
|
||
|
* then its inverse with MatrixBase::inverse().
|
||
|
*
|
||
|
* Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
|
||
|
* Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
|
||
|
*
|
||
|
* \sa operatorSqrt(), MatrixBase::inverse(),
|
||
|
* \ref MatrixFunctions_Module "MatrixFunctions Module"
|
||
|
*/
|
||
|
MatrixType operatorInverseSqrt() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
||
|
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
||
|
}
|
||
|
|
||
|
/** \brief Reports whether previous computation was successful.
|
||
|
*
|
||
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||
|
*/
|
||
|
ComputationInfo info() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||
|
return m_info;
|
||
|
}
|
||
|
|
||
|
/** \brief Maximum number of iterations.
|
||
|
*
|
||
|
* The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
|
||
|
* denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
|
||
|
*/
|
||
|
static const int m_maxIterations = 30;
|
||
|
|
||
|
#ifdef EIGEN2_SUPPORT
|
||
|
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
|
||
|
: m_eivec(matrix.rows(), matrix.cols()),
|
||
|
m_eivalues(matrix.cols()),
|
||
|
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
|
||
|
m_isInitialized(false)
|
||
|
{
|
||
|
compute(matrix, computeEigenvectors);
|
||
|
}
|
||
|
|
||
|
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
|
||
|
: m_eivec(matA.cols(), matA.cols()),
|
||
|
m_eivalues(matA.cols()),
|
||
|
m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
|
||
|
m_isInitialized(false)
|
||
|
{
|
||
|
static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
|
||
|
}
|
||
|
|
||
|
void compute(const MatrixType& matrix, bool computeEigenvectors)
|
||
|
{
|
||
|
compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
|
||
|
}
|
||
|
|
||
|
void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
|
||
|
{
|
||
|
compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
|
||
|
}
|
||
|
#endif // EIGEN2_SUPPORT
|
||
|
|
||
|
protected:
|
||
|
static void check_template_parameters()
|
||
|
{
|
||
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||
|
}
|
||
|
|
||
|
EigenvectorsType m_eivec;
|
||
|
RealVectorType m_eivalues;
|
||
|
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
||
|
ComputationInfo m_info;
|
||
|
bool m_isInitialized;
|
||
|
bool m_eigenvectorsOk;
|
||
|
};
|
||
|
|
||
|
/** \internal
|
||
|
*
|
||
|
* \eigenvalues_module \ingroup Eigenvalues_Module
|
||
|
*
|
||
|
* Performs a QR step on a tridiagonal symmetric matrix represented as a
|
||
|
* pair of two vectors \a diag and \a subdiag.
|
||
|
*
|
||
|
* \param matA the input selfadjoint matrix
|
||
|
* \param hCoeffs returned Householder coefficients
|
||
|
*
|
||
|
* For compilation efficiency reasons, this procedure does not use eigen expression
|
||
|
* for its arguments.
|
||
|
*
|
||
|
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
|
||
|
* "implicit symmetric QR step with Wilkinson shift"
|
||
|
*/
|
||
|
namespace internal {
|
||
|
template<typename RealScalar, typename Scalar, typename Index>
|
||
|
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
||
|
::compute(const MatrixType& matrix, int options)
|
||
|
{
|
||
|
check_template_parameters();
|
||
|
|
||
|
using std::abs;
|
||
|
eigen_assert(matrix.cols() == matrix.rows());
|
||
|
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||
|
&& (options&EigVecMask)!=EigVecMask
|
||
|
&& "invalid option parameter");
|
||
|
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
||
|
Index n = matrix.cols();
|
||
|
m_eivalues.resize(n,1);
|
||
|
|
||
|
if(n==1)
|
||
|
{
|
||
|
m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
|
||
|
if(computeEigenvectors)
|
||
|
m_eivec.setOnes(n,n);
|
||
|
m_info = Success;
|
||
|
m_isInitialized = true;
|
||
|
m_eigenvectorsOk = computeEigenvectors;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// declare some aliases
|
||
|
RealVectorType& diag = m_eivalues;
|
||
|
EigenvectorsType& mat = m_eivec;
|
||
|
|
||
|
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||
|
mat = matrix.template triangularView<Lower>();
|
||
|
RealScalar scale = mat.cwiseAbs().maxCoeff();
|
||
|
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||
|
mat.template triangularView<Lower>() /= scale;
|
||
|
m_subdiag.resize(n-1);
|
||
|
internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
|
||
|
|
||
|
Index end = n-1;
|
||
|
Index start = 0;
|
||
|
Index iter = 0; // total number of iterations
|
||
|
|
||
|
while (end>0)
|
||
|
{
|
||
|
for (Index i = start; i<end; ++i)
|
||
|
if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
|
||
|
m_subdiag[i] = 0;
|
||
|
|
||
|
// find the largest unreduced block
|
||
|
while (end>0 && m_subdiag[end-1]==0)
|
||
|
{
|
||
|
end--;
|
||
|
}
|
||
|
if (end<=0)
|
||
|
break;
|
||
|
|
||
|
// if we spent too many iterations, we give up
|
||
|
iter++;
|
||
|
if(iter > m_maxIterations * n) break;
|
||
|
|
||
|
start = end - 1;
|
||
|
while (start>0 && m_subdiag[start-1]!=0)
|
||
|
start--;
|
||
|
|
||
|
internal::tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||
|
}
|
||
|
|
||
|
if (iter <= m_maxIterations * n)
|
||
|
m_info = Success;
|
||
|
else
|
||
|
m_info = NoConvergence;
|
||
|
|
||
|
// Sort eigenvalues and corresponding vectors.
|
||
|
// TODO make the sort optional ?
|
||
|
// TODO use a better sort algorithm !!
|
||
|
if (m_info == Success)
|
||
|
{
|
||
|
for (Index i = 0; i < n-1; ++i)
|
||
|
{
|
||
|
Index k;
|
||
|
m_eivalues.segment(i,n-i).minCoeff(&k);
|
||
|
if (k > 0)
|
||
|
{
|
||
|
std::swap(m_eivalues[i], m_eivalues[k+i]);
|
||
|
if(computeEigenvectors)
|
||
|
m_eivec.col(i).swap(m_eivec.col(k+i));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// scale back the eigen values
|
||
|
m_eivalues *= scale;
|
||
|
|
||
|
m_isInitialized = true;
|
||
|
m_eigenvectorsOk = computeEigenvectors;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
|
||
|
{
|
||
|
static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
|
||
|
{ eig.compute(A,options); }
|
||
|
};
|
||
|
|
||
|
template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
|
||
|
{
|
||
|
typedef typename SolverType::MatrixType MatrixType;
|
||
|
typedef typename SolverType::RealVectorType VectorType;
|
||
|
typedef typename SolverType::Scalar Scalar;
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
||
|
|
||
|
/** \internal
|
||
|
* Computes the roots of the characteristic polynomial of \a m.
|
||
|
* For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
|
||
|
*/
|
||
|
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
using std::atan2;
|
||
|
using std::cos;
|
||
|
using std::sin;
|
||
|
const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
|
||
|
const Scalar s_sqrt3 = sqrt(Scalar(3.0));
|
||
|
|
||
|
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
||
|
// eigenvalues are the roots to this equation, all guaranteed to be
|
||
|
// real-valued, because the matrix is symmetric.
|
||
|
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
|
||
|
Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
|
||
|
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
|
||
|
|
||
|
// Construct the parameters used in classifying the roots of the equation
|
||
|
// and in solving the equation for the roots in closed form.
|
||
|
Scalar c2_over_3 = c2*s_inv3;
|
||
|
Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
|
||
|
if(a_over_3<Scalar(0))
|
||
|
a_over_3 = Scalar(0);
|
||
|
|
||
|
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
||
|
|
||
|
Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
|
||
|
if(q<Scalar(0))
|
||
|
q = Scalar(0);
|
||
|
|
||
|
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||
|
Scalar rho = sqrt(a_over_3);
|
||
|
Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
|
||
|
Scalar cos_theta = cos(theta);
|
||
|
Scalar sin_theta = sin(theta);
|
||
|
// roots are already sorted, since cos is monotonically decreasing on [0, pi]
|
||
|
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
|
||
|
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
|
||
|
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||
|
}
|
||
|
|
||
|
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
|
||
|
{
|
||
|
using std::abs;
|
||
|
Index i0;
|
||
|
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
|
||
|
mat.diagonal().cwiseAbs().maxCoeff(&i0);
|
||
|
// mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
|
||
|
// so let's save it:
|
||
|
representative = mat.col(i0);
|
||
|
Scalar n0, n1;
|
||
|
VectorType c0, c1;
|
||
|
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
|
||
|
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
|
||
|
if(n0>n1) res = c0/std::sqrt(n0);
|
||
|
else res = c1/std::sqrt(n1);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||
|
{
|
||
|
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
|
||
|
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||
|
&& (options&EigVecMask)!=EigVecMask
|
||
|
&& "invalid option parameter");
|
||
|
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
||
|
|
||
|
EigenvectorsType& eivecs = solver.m_eivec;
|
||
|
VectorType& eivals = solver.m_eivalues;
|
||
|
|
||
|
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||
|
Scalar shift = mat.trace() / Scalar(3);
|
||
|
// TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
|
||
|
MatrixType scaledMat = mat.template selfadjointView<Lower>();
|
||
|
scaledMat.diagonal().array() -= shift;
|
||
|
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
|
||
|
if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
|
||
|
|
||
|
// compute the eigenvalues
|
||
|
computeRoots(scaledMat,eivals);
|
||
|
|
||
|
// compute the eigenvectors
|
||
|
if(computeEigenvectors)
|
||
|
{
|
||
|
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
||
|
{
|
||
|
// All three eigenvalues are numerically the same
|
||
|
eivecs.setIdentity();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
MatrixType tmp;
|
||
|
tmp = scaledMat;
|
||
|
|
||
|
// Compute the eigenvector of the most distinct eigenvalue
|
||
|
Scalar d0 = eivals(2) - eivals(1);
|
||
|
Scalar d1 = eivals(1) - eivals(0);
|
||
|
Index k(0), l(2);
|
||
|
if(d0 > d1)
|
||
|
{
|
||
|
std::swap(k,l);
|
||
|
d0 = d1;
|
||
|
}
|
||
|
|
||
|
// Compute the eigenvector of index k
|
||
|
{
|
||
|
tmp.diagonal().array () -= eivals(k);
|
||
|
// By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
|
||
|
extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
|
||
|
}
|
||
|
|
||
|
// Compute eigenvector of index l
|
||
|
if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
|
||
|
{
|
||
|
// If d0 is too small, then the two other eigenvalues are numerically the same,
|
||
|
// and thus we only have to ortho-normalize the near orthogonal vector we saved above.
|
||
|
eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
|
||
|
eivecs.col(l).normalize();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tmp = scaledMat;
|
||
|
tmp.diagonal().array () -= eivals(l);
|
||
|
|
||
|
VectorType dummy;
|
||
|
extract_kernel(tmp, eivecs.col(l), dummy);
|
||
|
}
|
||
|
|
||
|
// Compute last eigenvector from the other two
|
||
|
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Rescale back to the original size.
|
||
|
eivals *= scale;
|
||
|
eivals.array() += shift;
|
||
|
|
||
|
solver.m_info = Success;
|
||
|
solver.m_isInitialized = true;
|
||
|
solver.m_eigenvectorsOk = computeEigenvectors;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
|
||
|
template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
|
||
|
{
|
||
|
typedef typename SolverType::MatrixType MatrixType;
|
||
|
typedef typename SolverType::RealVectorType VectorType;
|
||
|
typedef typename SolverType::Scalar Scalar;
|
||
|
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
||
|
|
||
|
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
|
||
|
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
|
||
|
roots(0) = t1 - t0;
|
||
|
roots(1) = t1 + t0;
|
||
|
}
|
||
|
|
||
|
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
using std::abs;
|
||
|
|
||
|
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
|
||
|
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||
|
&& (options&EigVecMask)!=EigVecMask
|
||
|
&& "invalid option parameter");
|
||
|
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
||
|
|
||
|
EigenvectorsType& eivecs = solver.m_eivec;
|
||
|
VectorType& eivals = solver.m_eivalues;
|
||
|
|
||
|
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||
|
Scalar scale = mat.cwiseAbs().maxCoeff();
|
||
|
scale = (std::max)(scale,Scalar(1));
|
||
|
MatrixType scaledMat = mat / scale;
|
||
|
|
||
|
// Compute the eigenvalues
|
||
|
computeRoots(scaledMat,eivals);
|
||
|
|
||
|
// compute the eigen vectors
|
||
|
if(computeEigenvectors)
|
||
|
{
|
||
|
if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
|
||
|
{
|
||
|
eivecs.setIdentity();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
scaledMat.diagonal().array () -= eivals(1);
|
||
|
Scalar a2 = numext::abs2(scaledMat(0,0));
|
||
|
Scalar c2 = numext::abs2(scaledMat(1,1));
|
||
|
Scalar b2 = numext::abs2(scaledMat(1,0));
|
||
|
if(a2>c2)
|
||
|
{
|
||
|
eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
|
||
|
eivecs.col(1) /= sqrt(a2+b2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
|
||
|
eivecs.col(1) /= sqrt(c2+b2);
|
||
|
}
|
||
|
|
||
|
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Rescale back to the original size.
|
||
|
eivals *= scale;
|
||
|
|
||
|
solver.m_info = Success;
|
||
|
solver.m_isInitialized = true;
|
||
|
solver.m_eigenvectorsOk = computeEigenvectors;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
||
|
::computeDirect(const MatrixType& matrix, int options)
|
||
|
{
|
||
|
internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
namespace internal {
|
||
|
template<typename RealScalar, typename Scalar, typename Index>
|
||
|
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
|
||
|
{
|
||
|
using std::abs;
|
||
|
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
|
||
|
RealScalar e = subdiag[end-1];
|
||
|
// Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
|
||
|
// underflow thus leading to inf/NaN values when using the following commented code:
|
||
|
// RealScalar e2 = numext::abs2(subdiag[end-1]);
|
||
|
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
|
||
|
// This explain the following, somewhat more complicated, version:
|
||
|
RealScalar mu = diag[end];
|
||
|
if(td==0)
|
||
|
mu -= abs(e);
|
||
|
else
|
||
|
{
|
||
|
RealScalar e2 = numext::abs2(subdiag[end-1]);
|
||
|
RealScalar h = numext::hypot(td,e);
|
||
|
if(e2==0) mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
|
||
|
else mu -= e2 / (td + (td>0 ? h : -h));
|
||
|
}
|
||
|
|
||
|
RealScalar x = diag[start] - mu;
|
||
|
RealScalar z = subdiag[start];
|
||
|
for (Index k = start; k < end; ++k)
|
||
|
{
|
||
|
JacobiRotation<RealScalar> rot;
|
||
|
rot.makeGivens(x, z);
|
||
|
|
||
|
// do T = G' T G
|
||
|
RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
|
||
|
RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
|
||
|
|
||
|
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
|
||
|
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
|
||
|
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
|
||
|
|
||
|
|
||
|
if (k > start)
|
||
|
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
|
||
|
|
||
|
x = subdiag[k];
|
||
|
|
||
|
if (k < end - 1)
|
||
|
{
|
||
|
z = -rot.s() * subdiag[k+1];
|
||
|
subdiag[k + 1] = rot.c() * subdiag[k+1];
|
||
|
}
|
||
|
|
||
|
// apply the givens rotation to the unit matrix Q = Q * G
|
||
|
if (matrixQ)
|
||
|
{
|
||
|
Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor> > q(matrixQ,n,n);
|
||
|
q.applyOnTheRight(k,k+1,rot);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // end namespace internal
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
|