// // Created by 顾涵彬 on 2019-08-28. // #ifndef MATRIX_MATRIX_H #define MATRIX_MATRIX_H #include #include #include namespace Ctain { template class Matrix { public: Matrix(int Rows, int Cols) : _Rows(Rows), _Cols(Cols), _isSub(0), input_id(0) { _startRow = 0; _startCol = 0; _Rows_raw = Rows; _Cols_raw = Cols; data = new _Scalar [_Rows * _Cols]; memset(data, 0, _Rows * _Cols * sizeof(_Scalar)); } Matrix() : _Rows(0), _Cols(0), _isSub(0), input_id(0) { _startRow = 0; _startCol = 0; _Rows_raw = 0; _Cols_raw = 0; } Matrix(_Scalar _data[], int Rows, int Cols) : _Rows(Rows), _Cols(Cols), _isSub(0), input_id(0) { _startRow = 0; _startCol = 0; _Rows_raw = Rows; _Cols_raw = Cols; data = new _Scalar [_Rows * _Cols]; memcpy(data, _data, _Rows * _Cols * sizeof(_Scalar)); } Matrix(_Scalar **_data, int Rows, int Cols) : _Rows(Rows), _Cols(Cols), _isSub(0), input_id(0) { _startRow = 0; _startCol = 0; _Rows_raw = Rows; _Cols_raw = Cols; data = new _Scalar [_Rows * _Cols]; for (int i = 0; i < _Rows; ++i) { memcpy(data + i * _Cols, *(_data + i), _Cols * sizeof(_Scalar)); } } template Matrix cast() { Matrix res(_Rows, _Cols); for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { res(i,j) = cData(i, j); } } return res; } void setIdentity() { for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { if(i == j) { Data(i,j) = 1; }else { Data(i,j) = 0; } } } } void setZero() { for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { Data(i, j) = 0; } } } inline int cols() const { return _Cols; } inline int rows() const { return _Rows; } inline int size() const { return cols() * rows(); } _Scalar * addr() { return data; } friend Matrix<_Scalar> &operator <<(Matrix<_Scalar> &m,_Scalar val) { m.Data(m.input_id++) = val; return m; } friend std::ostream &operator <<(std::ostream &os,const Matrix<_Scalar> &m) { // os << std::endl; for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols - 1; j++) { std::cout.width(10); std::cout.setf(std::ios::left); std::cout.precision(6); os << m.cData(i,j) ; } std::cout.width(9); std::cout.setf(std::ios::left); std::cout.precision(8); os << m.cData(i,m._Cols - 1) << std::endl; } return os; } friend Matrix<_Scalar> operator *( double a, const Matrix<_Scalar> &m) { Matrix<_Scalar> res; res = m; for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { res.Data(i,j) *= a; } } return res; } friend Matrix<_Scalar> operator *( const Matrix<_Scalar> &m, double a) { Matrix<_Scalar> res; res = m; for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { res.Data(i,j) *= a; } } return res; } friend Matrix<_Scalar> operator -( const Matrix<_Scalar> &m) { Matrix<_Scalar> res; res = m; for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { res.Data(i,j) *= -1; } } return res; } friend Matrix<_Scalar> operator +( double a, const Matrix<_Scalar> &m) { Matrix<_Scalar> res; res = m; for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { res.Data(i,j) += a; } } return res; } void operator =(Matrix<_Scalar> m); // void operator =(Matrix<_Scalar> &m); Matrix<_Scalar> operator +(const Matrix<_Scalar> &m) const; Matrix<_Scalar> operator -(const Matrix<_Scalar> &m) const; Matrix<_Scalar> operator *(const Matrix<_Scalar> &m) const; Matrix<_Scalar> operator /(double m) const; _Scalar &operator()(int i, int j) { return Data(i,j); } _Scalar &operator()(int id) { return Data(id); } _Scalar operator()(int id) const { return cData(id); } Matrix<_Scalar> transpose() const; Matrix<_Scalar> col(int Col) { return block(0, Col, _Rows, 1); } Matrix<_Scalar> row(int Row) { return block(Row, 0, 1, _Cols); } Matrix<_Scalar> block(int sRow, int sCol, int Rows, int Cols) { Matrix<_Scalar> sub; sub = *this; sub.setSub(sRow, sCol, Rows, Cols, data); return sub; } template Matrix<_Scalar> topLeftCorner() const { Matrix<_Scalar> sub; sub = *this; sub.setSub(0, 0, Rows, Cols, data); return sub; } template Matrix<_Scalar> topRightCorner() const { Matrix<_Scalar> sub; sub = *this; sub.setSub(0, _Cols-Cols, Rows, Cols, data); return sub; } void setSub(int sRow, int sCol, int Rows, int Cols, _Scalar *Data) { _isSub = true; _Rows_raw = _Rows; _Cols_raw = _Cols; _Rows = Rows; _Cols = Cols; _startRow = sRow; _startCol = sCol; data = Data; } void normalize(); double norm() const; virtual ~Matrix() { if(!data) delete[] data; } // template // inline Matrix<_Scalar, _Rows, _Cols> block<_Rows, _Cols>(Index i,Index j) { // // } inline _Scalar *Data() { return data; } protected: _Scalar *data; int _Rows; int _Cols; bool _isSub; int _startRow; int _startCol; int _Rows_raw; int _Cols_raw; int input_id ; inline int id(int i, int j) const { if(_isSub) return (i + _startRow) * _Cols_raw + j + _startCol; else return i * _Cols + j; } inline _Scalar &Data(int i,int j) { return data[id(i,j)]; } inline _Scalar &Data(int id) { int i = id / _Cols; int j = id % _Cols; int index; if(_isSub) index = (i + _startRow) * _Cols_raw + j + _startCol; else index = i * _Cols + j; return data[index]; } inline _Scalar cData(int id) const{ int i = id / _Cols; int j = id % _Cols; int index; if(_isSub) index = (i + _startRow) * _Cols_raw + j + _startCol; else index = i * _Cols + j; return data[index]; } inline _Scalar cData (int i,int j) const{ return data[id(i,j)]; } }; //class Matrix end template void Matrix<_Scalar>::operator =(Matrix<_Scalar> m) { if(m._isSub) { if(_isSub) { for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { Data(i,j) = m.cData(i, j); } } return; } _isSub = true; _Rows = m._Rows; _Cols = m._Cols; _Rows_raw = m._Rows_raw; _Cols_raw = m._Cols_raw; _startRow = m._startRow; _startCol = m._startCol; data = m.Data(); return; } if(!_isSub) { if(size() != m.size()) { if(size() > 0) { delete[] data; } _Rows = m._Rows; _Cols = m._Cols; data = new _Scalar[_Rows * _Cols]; }else { _Rows = m._Rows; _Cols = m._Cols; } } for (int i = 0; i < m._Rows; i++) { for (int j = 0; j < m._Cols; j++) { Data(i,j) = m.cData(i, j); } } } template Matrix<_Scalar> Matrix<_Scalar>::operator +(const Matrix<_Scalar> &m) const{ Matrix<_Scalar> sum; sum = *this; for (int i = 0; i < _Rows * _Cols; i++) { sum.data[i] += m.data[i]; } return sum; } template Matrix<_Scalar> Matrix<_Scalar>::operator -(const Matrix<_Scalar> &m) const{ Matrix<_Scalar> sum; sum = *this; for (int i = 0; i < _Rows * _Cols; i++) { sum.data[i] -= m.data[i]; } return sum; } template Matrix<_Scalar> Matrix<_Scalar>::transpose() const { Matrix<_Scalar> res(_Cols, _Rows); for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { res.Data(j, i) = cData(i, j); } } return res; } template Matrix<_Scalar> Matrix<_Scalar>::operator *(const Matrix<_Scalar> &m) const { if(_Cols != m._Rows) { //todo:output err return m; } Matrix<_Scalar> res(_Rows, m._Cols); for (int i = 0; i < _Rows; i++) { for (int j = 0; j < m._Cols; j++) { _Scalar sum = 0; for (int k = 0; k < _Cols; k++) { sum += cData(i, k) * m.cData(k, j); } res.Data(i,j) = sum; } } return res; } template Matrix<_Scalar> Matrix<_Scalar>::operator /(double m) const { Matrix<_Scalar> res; res = *this; for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { res.Data(i,j) /= m; } } return res; } template void Matrix<_Scalar>::normalize() { double sum = 0; for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { sum += Matrix::cData(i, j); } } sum = sqrt(sum); for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { Matrix::Data(i, j) /= sum; } } } template double Matrix<_Scalar>::norm() const{ double sum = 0; for (int i = 0; i < _Rows; i++) { for (int j = 0; j < _Cols; j++) { sum += Matrix::cData(i, j) * Matrix::cData(i, j); } } sum = sqrt(sum); return sum; } } //namespace Ctain end #endif //MATRIX_MATRIX_H