.. highlight:: c++ .. default-domain:: cpp .. _chapter-nnls_tutorial: ======================== Non-linear Least Squares ======================== Introduction ============ Ceres can solve bounds constrained robustified non-linear least squares problems of the form .. math:: :label: ceresproblem \min_{\mathbf{x}} &\quad \frac{1}{2}\sum_{i} \rho_i\left(\left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2\right) \\ \text{s.t.} &\quad l_j \le x_j \le u_j Problems of this form comes up in a broad range of areas across science and engineering - from `fitting curves`_ in statistics, to constructing `3D models from photographs`_ in computer vision. .. _fitting curves: http://en.wikipedia.org/wiki/Nonlinear_regression .. _3D models from photographs: http://en.wikipedia.org/wiki/Bundle_adjustment In this chapter we will learn how to solve :eq:`ceresproblem` using Ceres Solver. Full working code for all the examples described in this chapter and more can be found in the `examples `_ directory. The expression :math:`\rho_i\left(\left\|f_i\left(x_{i_1},...,x_{i_k}\right)\right\|^2\right)` is known as a ``ResidualBlock``, where :math:`f_i(\cdot)` is a :class:`CostFunction` that depends on the parameter blocks :math:`\left[x_{i_1},... , x_{i_k}\right]`. In most optimization problems small groups of scalars occur together. For example the three components of a translation vector and the four components of the quaternion that define the pose of a camera. We refer to such a group of small scalars as a ``ParameterBlock``. Of course a ``ParameterBlock`` can just be a single parameter. :math:`l_j` and :math:`u_j` are bounds on the parameter block :math:`x_j`. :math:`\rho_i` is a :class:`LossFunction`. A :class:`LossFunction` is a scalar function that is used to reduce the influence of outliers on the solution of non-linear least squares problems. As a special case, when :math:`\rho_i(x) = x`, i.e., the identity function, and :math:`l_j = -\infty` and :math:`u_j = \infty` we get the more familiar `non-linear least squares problem `_. .. math:: \frac{1}{2}\sum_{i} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2. :label: ceresproblem2 .. _section-hello-world: Hello World! ============ To get started, consider the problem of finding the minimum of the function .. math:: \frac{1}{2}(10 -x)^2. This is a trivial problem, whose minimum is located at :math:`x = 10`, but it is a good place to start to illustrate the basics of solving a problem with Ceres [#f1]_. The first step is to write a functor that will evaluate this the function :math:`f(x) = 10 - x`: .. code-block:: c++ struct CostFunctor { template bool operator()(const T* const x, T* residual) const { residual[0] = T(10.0) - x[0]; return true; } }; The important thing to note here is that ``operator()`` is a templated method, which assumes that all its inputs and outputs are of some type ``T``. The use of templating here allows Ceres to call ``CostFunctor::operator()``, with ``T=double`` when just the value of the residual is needed, and with a special type ``T=Jet`` when the Jacobians are needed. In :ref:`section-derivatives` we will discuss the various ways of supplying derivatives to Ceres in more detail. Once we have a way of computing the residual function, it is now time to construct a non-linear least squares problem using it and have Ceres solve it. .. code-block:: c++ int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); // The variable to solve for with its initial value. double initial_x = 5.0; double x = initial_x; // Build the problem. Problem problem; // Set up the only cost function (also known as residual). This uses // auto-differentiation to obtain the derivative (jacobian). CostFunction* cost_function = new AutoDiffCostFunction(new CostFunctor); problem.AddResidualBlock(cost_function, NULL, &x); // Run the solver! Solver::Options options; options.linear_solver_type = ceres::DENSE_QR; options.minimizer_progress_to_stdout = true; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.BriefReport() << "\n"; std::cout << "x : " << initial_x << " -> " << x << "\n"; return 0; } :class:`AutoDiffCostFunction` takes a ``CostFunctor`` as input, automatically differentiates it and gives it a :class:`CostFunction` interface. Compiling and running `examples/helloworld.cc `_ gives us .. code-block:: bash iter cost cost_change |gradient| |step| tr_ratio tr_radius ls_iter iter_time total_time 0 4.512500e+01 0.00e+00 9.50e+00 0.00e+00 0.00e+00 1.00e+04 0 5.33e-04 3.46e-03 1 4.511598e-07 4.51e+01 9.50e-04 9.50e+00 1.00e+00 3.00e+04 1 5.00e-04 4.05e-03 2 5.012552e-16 4.51e-07 3.17e-08 9.50e-04 1.00e+00 9.00e+04 1 1.60e-05 4.09e-03 Ceres Solver Report: Iterations: 2, Initial cost: 4.512500e+01, Final cost: 5.012552e-16, Termination: CONVERGENCE x : 0.5 -> 10 Starting from a :math:`x=5`, the solver in two iterations goes to 10 [#f2]_. The careful reader will note that this is a linear problem and one linear solve should be enough to get the optimal value. The default configuration of the solver is aimed at non-linear problems, and for reasons of simplicity we did not change it in this example. It is indeed possible to obtain the solution to this problem using Ceres in one iteration. Also note that the solver did get very close to the optimal function value of 0 in the very first iteration. We will discuss these issues in greater detail when we talk about convergence and parameter settings for Ceres. .. rubric:: Footnotes .. [#f1] `examples/helloworld.cc `_ .. [#f2] Actually the solver ran for three iterations, and it was by looking at the value returned by the linear solver in the third iteration, it observed that the update to the parameter block was too small and declared convergence. Ceres only prints out the display at the end of an iteration, and terminates as soon as it detects convergence, which is why you only see two iterations here and not three. .. _section-derivatives: Derivatives =========== Ceres Solver like most optimization packages, depends on being able to evaluate the value and the derivatives of each term in the objective function at arbitrary parameter values. Doing so correctly and efficiently is essential to getting good results. Ceres Solver provides a number of ways of doing so. You have already seen one of them in action -- Automatic Differentiation in `examples/helloworld.cc `_ We now consider the other two possibilities. Analytic and numeric derivatives. Numeric Derivatives ------------------- In some cases, its not possible to define a templated cost functor, for example when the evaluation of the residual involves a call to a library function that you do not have control over. In such a situation, numerical differentiation can be used. The user defines a functor which computes the residual value and construct a :class:`NumericDiffCostFunction` using it. e.g., for :math:`f(x) = 10 - x` the corresponding functor would be .. code-block:: c++ struct NumericDiffCostFunctor { bool operator()(const double* const x, double* residual) const { residual[0] = 10.0 - x[0]; return true; } }; Which is added to the :class:`Problem` as: .. code-block:: c++ CostFunction* cost_function = new NumericDiffCostFunction( new NumericDiffCostFunctor) problem.AddResidualBlock(cost_function, NULL, &x); Notice the parallel from when we were using automatic differentiation .. code-block:: c++ CostFunction* cost_function = new AutoDiffCostFunction(new CostFunctor); problem.AddResidualBlock(cost_function, NULL, &x); The construction looks almost identical to the one used for automatic differentiation, except for an extra template parameter that indicates the kind of finite differencing scheme to be used for computing the numerical derivatives [#f3]_. For more details see the documentation for :class:`NumericDiffCostFunction`. **Generally speaking we recommend automatic differentiation instead of numeric differentiation. The use of C++ templates makes automatic differentiation efficient, whereas numeric differentiation is expensive, prone to numeric errors, and leads to slower convergence.** Analytic Derivatives -------------------- In some cases, using automatic differentiation is not possible. For example, it may be the case that it is more efficient to compute the derivatives in closed form instead of relying on the chain rule used by the automatic differentiation code. In such cases, it is possible to supply your own residual and jacobian computation code. To do this, define a subclass of :class:`CostFunction` or :class:`SizedCostFunction` if you know the sizes of the parameters and residuals at compile time. Here for example is ``SimpleCostFunction`` that implements :math:`f(x) = 10 - x`. .. code-block:: c++ class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { public: virtual ~QuadraticCostFunction() {} virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { const double x = parameters[0][0]; residuals[0] = 10 - x; // Compute the Jacobian if asked for. if (jacobians != NULL && jacobians[0] != NULL) { jacobians[0][0] = -1; } return true; } }; ``SimpleCostFunction::Evaluate`` is provided with an input array of ``parameters``, an output array ``residuals`` for residuals and an output array ``jacobians`` for Jacobians. The ``jacobians`` array is optional, ``Evaluate`` is expected to check when it is non-null, and if it is the case then fill it with the values of the derivative of the residual function. In this case since the residual function is linear, the Jacobian is constant [#f4]_ . As can be seen from the above code fragments, implementing :class:`CostFunction` objects is a bit tedious. We recommend that unless you have a good reason to manage the jacobian computation yourself, you use :class:`AutoDiffCostFunction` or :class:`NumericDiffCostFunction` to construct your residual blocks. More About Derivatives ---------------------- Computing derivatives is by far the most complicated part of using Ceres, and depending on the circumstance the user may need more sophisticated ways of computing derivatives. This section just scratches the surface of how derivatives can be supplied to Ceres. Once you are comfortable with using :class:`NumericDiffCostFunction` and :class:`AutoDiffCostFunction` we recommend taking a look at :class:`DynamicAutoDiffCostFunction`, :class:`CostFunctionToFunctor`, :class:`NumericDiffFunctor` and :class:`ConditionedCostFunction` for more advanced ways of constructing and computing cost functions. .. rubric:: Footnotes .. [#f3] `examples/helloworld_numeric_diff.cc `_. .. [#f4] `examples/helloworld_analytic_diff.cc `_. .. _section-powell: Powell's Function ================= Consider now a slightly more complicated example -- the minimization of Powell's function. Let :math:`x = \left[x_1, x_2, x_3, x_4 \right]` and .. math:: \begin{align} f_1(x) &= x_1 + 10x_2 \\ f_2(x) &= \sqrt{5} (x_3 - x_4)\\ f_3(x) &= (x_2 - 2x_3)^2\\ f_4(x) &= \sqrt{10} (x_1 - x_4)^2\\ F(x) &= \left[f_1(x),\ f_2(x),\ f_3(x),\ f_4(x) \right] \end{align} :math:`F(x)` is a function of four parameters, has four residuals and we wish to find :math:`x` such that :math:`\frac{1}{2}\|F(x)\|^2` is minimized. Again, the first step is to define functors that evaluate of the terms in the objective functor. Here is the code for evaluating :math:`f_4(x_1, x_4)`: .. code-block:: c++ struct F4 { template bool operator()(const T* const x1, const T* const x4, T* residual) const { residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); return true; } }; Similarly, we can define classes ``F1``, ``F2`` and ``F3`` to evaluate :math:`f_1(x_1, x_2)`, :math:`f_2(x_3, x_4)` and :math:`f_3(x_2, x_3)` respectively. Using these, the problem can be constructed as follows: .. code-block:: c++ double x1 = 3.0; double x2 = -1.0; double x3 = 0.0; double x4 = 1.0; Problem problem; // Add residual terms to the problem using the using the autodiff // wrapper to get the derivatives automatically. problem.AddResidualBlock( new AutoDiffCostFunction(new F1), NULL, &x1, &x2); problem.AddResidualBlock( new AutoDiffCostFunction(new F2), NULL, &x3, &x4); problem.AddResidualBlock( new AutoDiffCostFunction(new F3), NULL, &x2, &x3) problem.AddResidualBlock( new AutoDiffCostFunction(new F4), NULL, &x1, &x4); Note that each ``ResidualBlock`` only depends on the two parameters that the corresponding residual object depends on and not on all four parameters. Compiling and running `examples/powell.cc `_ gives us: .. code-block:: bash Initial x1 = 3, x2 = -1, x3 = 0, x4 = 1 iter cost cost_change |gradient| |step| tr_ratio tr_radius ls_iter iter_time total_time 0 1.075000e+02 0.00e+00 1.55e+02 0.00e+00 0.00e+00 1.00e+04 0 4.95e-04 2.30e-03 1 5.036190e+00 1.02e+02 2.00e+01 2.16e+00 9.53e-01 3.00e+04 1 4.39e-05 2.40e-03 2 3.148168e-01 4.72e+00 2.50e+00 6.23e-01 9.37e-01 9.00e+04 1 9.06e-06 2.43e-03 3 1.967760e-02 2.95e-01 3.13e-01 3.08e-01 9.37e-01 2.70e+05 1 8.11e-06 2.45e-03 4 1.229900e-03 1.84e-02 3.91e-02 1.54e-01 9.37e-01 8.10e+05 1 6.91e-06 2.48e-03 5 7.687123e-05 1.15e-03 4.89e-03 7.69e-02 9.37e-01 2.43e+06 1 7.87e-06 2.50e-03 6 4.804625e-06 7.21e-05 6.11e-04 3.85e-02 9.37e-01 7.29e+06 1 5.96e-06 2.52e-03 7 3.003028e-07 4.50e-06 7.64e-05 1.92e-02 9.37e-01 2.19e+07 1 5.96e-06 2.55e-03 8 1.877006e-08 2.82e-07 9.54e-06 9.62e-03 9.37e-01 6.56e+07 1 5.96e-06 2.57e-03 9 1.173223e-09 1.76e-08 1.19e-06 4.81e-03 9.37e-01 1.97e+08 1 7.87e-06 2.60e-03 10 7.333425e-11 1.10e-09 1.49e-07 2.40e-03 9.37e-01 5.90e+08 1 6.20e-06 2.63e-03 11 4.584044e-12 6.88e-11 1.86e-08 1.20e-03 9.37e-01 1.77e+09 1 6.91e-06 2.65e-03 12 2.865573e-13 4.30e-12 2.33e-09 6.02e-04 9.37e-01 5.31e+09 1 5.96e-06 2.67e-03 13 1.791438e-14 2.69e-13 2.91e-10 3.01e-04 9.37e-01 1.59e+10 1 7.15e-06 2.69e-03 Ceres Solver v1.11.0 Solve Report ---------------------------------- Original Reduced Parameter blocks 4 4 Parameters 4 4 Residual blocks 4 4 Residual 4 4 Minimizer TRUST_REGION Dense linear algebra library EIGEN Trust region strategy LEVENBERG_MARQUARDT Given Used Linear solver DENSE_QR DENSE_QR Threads 1 1 Linear solver threads 1 1 Cost: Initial 1.075000e+02 Final 1.791438e-14 Change 1.075000e+02 Minimizer iterations 14 Successful steps 14 Unsuccessful steps 0 Time (in seconds): Preprocessor 0.002 Residual evaluation 0.000 Jacobian evaluation 0.000 Linear solver 0.000 Minimizer 0.001 Postprocessor 0.000 Total 0.005 Termination: CONVERGENCE (Gradient tolerance reached. Gradient max norm: 3.642190e-11 <= 1.000000e-10) Final x1 = 0.000292189, x2 = -2.92189e-05, x3 = 4.79511e-05, x4 = 4.79511e-05 It is easy to see that the optimal solution to this problem is at :math:`x_1=0, x_2=0, x_3=0, x_4=0` with an objective function value of :math:`0`. In 10 iterations, Ceres finds a solution with an objective function value of :math:`4\times 10^{-12}`. .. rubric:: Footnotes .. [#f5] `examples/powell.cc `_. .. _section-fitting: Curve Fitting ============= The examples we have seen until now are simple optimization problems with no data. The original purpose of least squares and non-linear least squares analysis was fitting curves to data. It is only appropriate that we now consider an example of such a problem [#f6]_. It contains data generated by sampling the curve :math:`y = e^{0.3x + 0.1}` and adding Gaussian noise with standard deviation :math:`\sigma = 0.2`. Let us fit some data to the curve .. math:: y = e^{mx + c}. We begin by defining a templated object to evaluate the residual. There will be a residual for each observation. .. code-block:: c++ struct ExponentialResidual { ExponentialResidual(double x, double y) : x_(x), y_(y) {} template bool operator()(const T* const m, const T* const c, T* residual) const { residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]); return true; } private: // Observations for a sample. const double x_; const double y_; }; Assuming the observations are in a :math:`2n` sized array called ``data`` the problem construction is a simple matter of creating a :class:`CostFunction` for every observation. .. code-block:: c++ double m = 0.0; double c = 0.0; Problem problem; for (int i = 0; i < kNumObservations; ++i) { CostFunction* cost_function = new AutoDiffCostFunction( new ExponentialResidual(data[2 * i], data[2 * i + 1])); problem.AddResidualBlock(cost_function, NULL, &m, &c); } Compiling and running `examples/curve_fitting.cc `_ gives us: .. code-block:: bash iter cost cost_change |gradient| |step| tr_ratio tr_radius ls_iter iter_time total_time 0 1.211734e+02 0.00e+00 3.61e+02 0.00e+00 0.00e+00 1.00e+04 0 5.34e-04 2.56e-03 1 1.211734e+02 -2.21e+03 0.00e+00 7.52e-01 -1.87e+01 5.00e+03 1 4.29e-05 3.25e-03 2 1.211734e+02 -2.21e+03 0.00e+00 7.51e-01 -1.86e+01 1.25e+03 1 1.10e-05 3.28e-03 3 1.211734e+02 -2.19e+03 0.00e+00 7.48e-01 -1.85e+01 1.56e+02 1 1.41e-05 3.31e-03 4 1.211734e+02 -2.02e+03 0.00e+00 7.22e-01 -1.70e+01 9.77e+00 1 1.00e-05 3.34e-03 5 1.211734e+02 -7.34e+02 0.00e+00 5.78e-01 -6.32e+00 3.05e-01 1 1.00e-05 3.36e-03 6 3.306595e+01 8.81e+01 4.10e+02 3.18e-01 1.37e+00 9.16e-01 1 2.79e-05 3.41e-03 7 6.426770e+00 2.66e+01 1.81e+02 1.29e-01 1.10e+00 2.75e+00 1 2.10e-05 3.45e-03 8 3.344546e+00 3.08e+00 5.51e+01 3.05e-02 1.03e+00 8.24e+00 1 2.10e-05 3.48e-03 9 1.987485e+00 1.36e+00 2.33e+01 8.87e-02 9.94e-01 2.47e+01 1 2.10e-05 3.52e-03 10 1.211585e+00 7.76e-01 8.22e+00 1.05e-01 9.89e-01 7.42e+01 1 2.10e-05 3.56e-03 11 1.063265e+00 1.48e-01 1.44e+00 6.06e-02 9.97e-01 2.22e+02 1 2.60e-05 3.61e-03 12 1.056795e+00 6.47e-03 1.18e-01 1.47e-02 1.00e+00 6.67e+02 1 2.10e-05 3.64e-03 13 1.056751e+00 4.39e-05 3.79e-03 1.28e-03 1.00e+00 2.00e+03 1 2.10e-05 3.68e-03 Ceres Solver Report: Iterations: 13, Initial cost: 1.211734e+02, Final cost: 1.056751e+00, Termination: CONVERGENCE Initial m: 0 c: 0 Final m: 0.291861 c: 0.131439 Starting from parameter values :math:`m = 0, c=0` with an initial objective function value of :math:`121.173` Ceres finds a solution :math:`m= 0.291861, c = 0.131439` with an objective function value of :math:`1.05675`. These values are a bit different than the parameters of the original model :math:`m=0.3, c= 0.1`, but this is expected. When reconstructing a curve from noisy data, we expect to see such deviations. Indeed, if you were to evaluate the objective function for :math:`m=0.3, c=0.1`, the fit is worse with an objective function value of :math:`1.082425`. The figure below illustrates the fit. .. figure:: least_squares_fit.png :figwidth: 500px :height: 400px :align: center Least squares curve fitting. .. rubric:: Footnotes .. [#f6] `examples/curve_fitting.cc `_ Robust Curve Fitting ===================== Now suppose the data we are given has some outliers, i.e., we have some points that do not obey the noise model. If we were to use the code above to fit such data, we would get a fit that looks as below. Notice how the fitted curve deviates from the ground truth. .. figure:: non_robust_least_squares_fit.png :figwidth: 500px :height: 400px :align: center To deal with outliers, a standard technique is to use a :class:`LossFunction`. Loss functions reduce the influence of residual blocks with high residuals, usually the ones corresponding to outliers. To associate a loss function with a residual block, we change .. code-block:: c++ problem.AddResidualBlock(cost_function, NULL , &m, &c); to .. code-block:: c++ problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c); :class:`CauchyLoss` is one of the loss functions that ships with Ceres Solver. The argument :math:`0.5` specifies the scale of the loss function. As a result, we get the fit below [#f7]_. Notice how the fitted curve moves back closer to the ground truth curve. .. figure:: robust_least_squares_fit.png :figwidth: 500px :height: 400px :align: center Using :class:`LossFunction` to reduce the effect of outliers on a least squares fit. .. rubric:: Footnotes .. [#f7] `examples/robust_curve_fitting.cc `_ Bundle Adjustment ================= One of the main reasons for writing Ceres was our need to solve large scale bundle adjustment problems [HartleyZisserman]_, [Triggs]_. Given a set of measured image feature locations and correspondences, the goal of bundle adjustment is to find 3D point positions and camera parameters that minimize the reprojection error. This optimization problem is usually formulated as a non-linear least squares problem, where the error is the squared :math:`L_2` norm of the difference between the observed feature location and the projection of the corresponding 3D point on the image plane of the camera. Ceres has extensive support for solving bundle adjustment problems. Let us solve a problem from the `BAL `_ dataset [#f8]_. The first step as usual is to define a templated functor that computes the reprojection error/residual. The structure of the functor is similar to the ``ExponentialResidual``, in that there is an instance of this object responsible for each image observation. Each residual in a BAL problem depends on a three dimensional point and a nine parameter camera. The nine parameters defining the camera are: three for rotation as a Rodriques' axis-angle vector, three for translation, one for focal length and two for radial distortion. The details of this camera model can be found the `Bundler homepage `_ and the `BAL homepage `_. .. code-block:: c++ struct SnavelyReprojectionError { SnavelyReprojectionError(double observed_x, double observed_y) : observed_x(observed_x), observed_y(observed_y) {} template bool operator()(const T* const camera, const T* const point, T* residuals) const { // camera[0,1,2] are the angle-axis rotation. T p[3]; ceres::AngleAxisRotatePoint(camera, point, p); // camera[3,4,5] are the translation. p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5]; // Compute the center of distortion. The sign change comes from // the camera model that Noah Snavely's Bundler assumes, whereby // the camera coordinate system has a negative z axis. T xp = - p[0] / p[2]; T yp = - p[1] / p[2]; // Apply second and fourth order radial distortion. const T& l1 = camera[7]; const T& l2 = camera[8]; T r2 = xp*xp + yp*yp; T distortion = T(1.0) + r2 * (l1 + l2 * r2); // Compute final projected point position. const T& focal = camera[6]; T predicted_x = focal * distortion * xp; T predicted_y = focal * distortion * yp; // The error is the difference between the predicted and observed position. residuals[0] = predicted_x - T(observed_x); residuals[1] = predicted_y - T(observed_y); return true; } // Factory to hide the construction of the CostFunction object from // the client code. static ceres::CostFunction* Create(const double observed_x, const double observed_y) { return (new ceres::AutoDiffCostFunction( new SnavelyReprojectionError(observed_x, observed_y))); } double observed_x; double observed_y; }; Note that unlike the examples before, this is a non-trivial function and computing its analytic Jacobian is a bit of a pain. Automatic differentiation makes life much simpler. The function :func:`AngleAxisRotatePoint` and other functions for manipulating rotations can be found in ``include/ceres/rotation.h``. Given this functor, the bundle adjustment problem can be constructed as follows: .. code-block:: c++ ceres::Problem problem; for (int i = 0; i < bal_problem.num_observations(); ++i) { ceres::CostFunction* cost_function = SnavelyReprojectionError::Create( bal_problem.observations()[2 * i + 0], bal_problem.observations()[2 * i + 1]); problem.AddResidualBlock(cost_function, NULL /* squared loss */, bal_problem.mutable_camera_for_observation(i), bal_problem.mutable_point_for_observation(i)); } Notice that the problem construction for bundle adjustment is very similar to the curve fitting example -- one term is added to the objective function per observation. Since this large sparse problem (well large for ``DENSE_QR`` anyways), one way to solve this problem is to set :member:`Solver::Options::linear_solver_type` to ``SPARSE_NORMAL_CHOLESKY`` and call :member:`Solve`. And while this is a reasonable thing to do, bundle adjustment problems have a special sparsity structure that can be exploited to solve them much more efficiently. Ceres provides three specialized solvers (collectively known as Schur-based solvers) for this task. The example code uses the simplest of them ``DENSE_SCHUR``. .. code-block:: c++ ceres::Solver::Options options; options.linear_solver_type = ceres::DENSE_SCHUR; options.minimizer_progress_to_stdout = true; ceres::Solver::Summary summary; ceres::Solve(options, &problem, &summary); std::cout << summary.FullReport() << "\n"; For a more sophisticated bundle adjustment example which demonstrates the use of Ceres' more advanced features including its various linear solvers, robust loss functions and local parameterizations see `examples/bundle_adjuster.cc `_ .. rubric:: Footnotes .. [#f8] `examples/simple_bundle_adjuster.cc `_ Other Examples ============== Besides the examples in this chapter, the `example `_ directory contains a number of other examples: #. `bundle_adjuster.cc `_ shows how to use the various features of Ceres to solve bundle adjustment problems. #. `circle_fit.cc `_ shows how to fit data to a circle. #. `ellipse_approximation.cc `_ fits points randomly distributed on an ellipse with an approximate line segment contour. This is done by jointly optimizing the control points of the line segment contour along with the preimage positions for the data points. The purpose of this example is to show an example use case for ``Solver::Options::dynamic_sparsity``, and how it can benefit problems which are numerically dense but dynamically sparse. #. `denoising.cc `_ implements image denoising using the `Fields of Experts `_ model. #. `nist.cc `_ implements and attempts to solves the `NIST `_ non-linear regression problems. #. `nist.cc `_ implements and attempts to solves the `NIST `_ non-linear regression problems. #. `more_garbow_hillstrom.cc `_ A subset of the test problems from the paper Testing Unconstrained Optimization Software Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981 which were augmented with bounds and used for testing bounds constrained optimization algorithms by A Trust Region Approach to Linearly Constrained Optimization David M. Gay Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105 Lecture Notes in Mathematics 1066, Springer Verlag, 1984. #. `libmv_bundle_adjuster.cc `_ is the bundle adjustment algorithm used by `Blender `_/libmv. #. `libmv_homography.cc `_ This file demonstrates solving for a homography between two sets of points and using a custom exit criterion by having a callback check for image-space error. #. `robot_pose_mle.cc `_ This example demonstrates how to use the ``DynamicAutoDiffCostFunction`` variant of CostFunction. The ``DynamicAutoDiffCostFunction`` is meant to be used in cases where the number of parameter blocks or the sizes are not known at compile time. This example simulates a robot traversing down a 1-dimension hallway with noise odometry readings and noisy range readings of the end of the hallway. By fusing the noisy odometry and sensor readings this example demonstrates how to compute the maximum likelihood estimate (MLE) of the robot's pose at each timestep.