// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // sameeragarwal@google.com (Sameer Agarwal) // // End-to-end bundle adjustment tests for Ceres. It uses a bundle // adjustment problem with 16 cameras and two thousand points. #include #include #include #include #include "ceres/internal/port.h" #include "ceres/autodiff_cost_function.h" #include "ceres/ordered_groups.h" #include "ceres/problem.h" #include "ceres/rotation.h" #include "ceres/solver.h" #include "ceres/stringprintf.h" #include "ceres/test_util.h" #include "ceres/types.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { using std::string; using std::vector; const bool kAutomaticOrdering = true; const bool kUserOrdering = false; // This class implements the SystemTestProblem interface and provides // access to a bundle adjustment problem. It is based on // examples/bundle_adjustment_example.cc. Currently a small 16 camera // problem is hard coded in the constructor. class BundleAdjustmentProblem { public: BundleAdjustmentProblem() { const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt"); ReadData(input_file); BuildProblem(); } ~BundleAdjustmentProblem() { delete []point_index_; delete []camera_index_; delete []observations_; delete []parameters_; } Problem* mutable_problem() { return &problem_; } Solver::Options* mutable_solver_options() { return &options_; } int num_cameras() const { return num_cameras_; } int num_points() const { return num_points_; } int num_observations() const { return num_observations_; } const int* point_index() const { return point_index_; } const int* camera_index() const { return camera_index_; } const double* observations() const { return observations_; } double* mutable_cameras() { return parameters_; } double* mutable_points() { return parameters_ + 9 * num_cameras_; } static double kResidualTolerance; private: void ReadData(const string& filename) { FILE * fptr = fopen(filename.c_str(), "r"); if (!fptr) { LOG(FATAL) << "File Error: unable to open file " << filename; } // This will die horribly on invalid files. Them's the breaks. FscanfOrDie(fptr, "%d", &num_cameras_); FscanfOrDie(fptr, "%d", &num_points_); FscanfOrDie(fptr, "%d", &num_observations_); VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " " << num_observations_; point_index_ = new int[num_observations_]; camera_index_ = new int[num_observations_]; observations_ = new double[2 * num_observations_]; num_parameters_ = 9 * num_cameras_ + 3 * num_points_; parameters_ = new double[num_parameters_]; for (int i = 0; i < num_observations_; ++i) { FscanfOrDie(fptr, "%d", camera_index_ + i); FscanfOrDie(fptr, "%d", point_index_ + i); for (int j = 0; j < 2; ++j) { FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); } } for (int i = 0; i < num_parameters_; ++i) { FscanfOrDie(fptr, "%lf", parameters_ + i); } } void BuildProblem() { double* points = mutable_points(); double* cameras = mutable_cameras(); for (int i = 0; i < num_observations(); ++i) { // Each Residual block takes a point and a camera as input and // outputs a 2 dimensional residual. CostFunction* cost_function = new AutoDiffCostFunction( new BundlerResidual(observations_[2*i + 0], observations_[2*i + 1])); // Each observation correponds to a pair of a camera and a point // which are identified by camera_index()[i] and // point_index()[i] respectively. double* camera = cameras + 9 * camera_index_[i]; double* point = points + 3 * point_index()[i]; problem_.AddResidualBlock(cost_function, NULL, camera, point); } options_.linear_solver_ordering.reset(new ParameterBlockOrdering); // The points come before the cameras. for (int i = 0; i < num_points_; ++i) { options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0); } for (int i = 0; i < num_cameras_; ++i) { options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1); } options_.linear_solver_type = DENSE_SCHUR; options_.max_num_iterations = 25; options_.function_tolerance = 1e-10; options_.gradient_tolerance = 1e-10; options_.parameter_tolerance = 1e-10; } template void FscanfOrDie(FILE *fptr, const char *format, T *value) { int num_scanned = fscanf(fptr, format, value); if (num_scanned != 1) { LOG(FATAL) << "Invalid UW data file."; } } // Templated pinhole camera model. The camera is parameterized // using 9 parameters. 3 for rotation, 3 for translation, 1 for // focal length and 2 for radial distortion. The principal point is // not modeled (i.e. it is assumed to be located at the image // center). struct BundlerResidual { // (u, v): the position of the observation with respect to the image // center point. BundlerResidual(double u, double v): u(u), v(v) {} template bool operator()(const T* const camera, const T* const point, T* residuals) const { T p[3]; AngleAxisRotatePoint(camera, point, p); // Add the translation vector p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5]; const T& focal = camera[6]; const T& l1 = camera[7]; const T& l2 = camera[8]; // Compute the center of distortion. The sign change comes from // the camera model that Noah Snavely's Bundler assumes, whereby // the camera coordinate system has a negative z axis. T xp = - focal * p[0] / p[2]; T yp = - focal * p[1] / p[2]; // Apply second and fourth order radial distortion. T r2 = xp*xp + yp*yp; T distortion = T(1.0) + r2 * (l1 + l2 * r2); residuals[0] = distortion * xp - T(u); residuals[1] = distortion * yp - T(v); return true; } double u; double v; }; Problem problem_; Solver::Options options_; int num_cameras_; int num_points_; int num_observations_; int num_parameters_; int* point_index_; int* camera_index_; double* observations_; // The parameter vector is laid out as follows // [camera_1, ..., camera_n, point_1, ..., point_m] double* parameters_; }; double BundleAdjustmentProblem::kResidualTolerance = 1e-4; typedef SystemTest BundleAdjustmentTest; TEST_F(BundleAdjustmentTest, DenseSchurWithAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(DENSE_SCHUR, NO_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, DenseSchurWithUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(DENSE_SCHUR, NO_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithJacobiAndAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kAutomaticOrdering, JACOBI)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithJacobiAndUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kUserOrdering, JACOBI)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithSchurJacobiAndAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kAutomaticOrdering, SCHUR_JACOBI)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithSchurJacobiAndUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kUserOrdering, SCHUR_JACOBI)); } #ifndef CERES_NO_SUITESPARSE TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, SUITE_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithClusterJacobiAndAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithClusterJacobiAndUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_JACOBI)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithClusterTridiagonalAndAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL)); } TEST_F(BundleAdjustmentTest, IterativeSchurWithClusterTridiagonalAndUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_TRIDIAGONAL)); } #endif // CERES_NO_SUITESPARSE #ifndef CERES_NO_CXSPARSE TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithAutomaticOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithUserOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithAutomaticOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, CX_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithUserOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, CX_SPARSE, kUserOrdering)); } #endif // CERES_NO_CXSPARSE #ifdef CERES_USE_EIGEN_SPARSE TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithAutomaticOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseNormalCholeskyWithUserOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithAutomaticOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, EIGEN_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, SparseSchurWithUserOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( SolverConfig(SPARSE_SCHUR, EIGEN_SPARSE, kUserOrdering)); } #endif // CERES_USE_EIGEN_SPARSE #ifdef CERES_USE_OPENMP TEST_F(BundleAdjustmentTest, MultiThreadedDenseSchurWithAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(DENSE_SCHUR, NO_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedDenseSchurWithUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(DENSE_SCHUR, NO_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithJacobiAndAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kAutomaticOrdering, JACOBI)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithJacobiAndUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kUserOrdering, JACOBI)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithSchurJacobiAndAutomaticOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kAutomaticOrdering, SCHUR_JACOBI)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithSchurJacobiAndUserOrdering) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, NO_SPARSE, kUserOrdering, SCHUR_JACOBI)); } #ifndef CERES_NO_SUITESPARSE TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithAutomaticOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithUserOrderingUsingSuiteSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, SUITE_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithClusterJacobiAndAutomaticOrderingUsingSuiteSparse) { // NOLINT RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithClusterJacobiAndUserOrderingUsingSuiteSparse) { // NOLINT RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_JACOBI)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithClusterTridiagonalAndAutomaticOrderingUsingSuiteSparse) { // NOLINT RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL)); } TEST_F(BundleAdjustmentTest, MultiThreadedIterativeSchurWithClusterTridiagonalAndUserOrderingUsingSuiteSparse) { // NOTLINT RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_TRIDIAGONAL)); } #endif // CERES_NO_SUITESPARSE #ifndef CERES_NO_CXSPARSE TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithAutomaticOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithUserOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithAutomaticOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, CX_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithUserOrderingUsingCXSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, CX_SPARSE, kUserOrdering)); } #endif // CERES_NO_CXSPARSE #ifdef CERES_USE_EIGEN_SPARSE TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithAutomaticOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseNormalCholeskyWithUserOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kUserOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithAutomaticOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, EIGEN_SPARSE, kAutomaticOrdering)); } TEST_F(BundleAdjustmentTest, MultiThreadedSparseSchurWithUserOrderingUsingEigenSparse) { RunSolverForConfigAndExpectResidualsMatch( ThreadedSolverConfig(SPARSE_SCHUR, EIGEN_SPARSE, kUserOrdering)); } #endif // CERES_USE_EIGEN_SPARSE #endif // CERES_USE_OPENMP } // namespace internal } // namespace ceres