// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/cubic_interpolation.h" #include "ceres/jet.h" #include "ceres/internal/scoped_ptr.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { static const double kTolerance = 1e-12; TEST(Grid1D, OneDataDimension) { int x[] = {1, 2, 3}; Grid1D grid(x, 0, 3); for (int i = 0; i < 3; ++i) { double value; grid.GetValue(i, &value); EXPECT_EQ(value, static_cast(i + 1)); } } TEST(Grid1D, OneDataDimensionOutOfBounds) { int x[] = {1, 2, 3}; Grid1D grid(x, 0, 3); double value; grid.GetValue(-1, &value); EXPECT_EQ(value, x[0]); grid.GetValue(-2, &value); EXPECT_EQ(value, x[0]); grid.GetValue(3, &value); EXPECT_EQ(value, x[2]); grid.GetValue(4, &value); EXPECT_EQ(value, x[2]); } TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) { int x[] = {1, 5, 2, 6, 3, 7}; Grid1D grid(x, 0, 3); for (int i = 0; i < 3; ++i) { double value[2]; grid.GetValue(i, value); EXPECT_EQ(value[0], static_cast(i + 1)); EXPECT_EQ(value[1], static_cast(i + 5)); } } TEST(Grid1D, TwoDataDimensionIntegerDataStacked) { int x[] = {1, 2, 3, 5, 6, 7}; Grid1D grid(x, 0, 3); for (int i = 0; i < 3; ++i) { double value[2]; grid.GetValue(i, value); EXPECT_EQ(value[0], static_cast(i + 1)); EXPECT_EQ(value[1], static_cast(i + 5)); } } TEST(Grid2D, OneDataDimensionRowMajor) { int x[] = {1, 2, 3, 2, 3, 4}; Grid2D grid(x, 0, 2, 0, 3); for (int r = 0; r < 2; ++r) { for (int c = 0; c < 3; ++c) { double value; grid.GetValue(r, c, &value); EXPECT_EQ(value, static_cast(r + c + 1)); } } } TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) { int x[] = {1, 2, 3, 2, 3, 4}; Grid2D grid(x, 0, 2, 0, 3); double value; grid.GetValue(-1, -1, &value); EXPECT_EQ(value, x[0]); grid.GetValue(-1, 0, &value); EXPECT_EQ(value, x[0]); grid.GetValue(-1, 1, &value); EXPECT_EQ(value, x[1]); grid.GetValue(-1, 2, &value); EXPECT_EQ(value, x[2]); grid.GetValue(-1, 3, &value); EXPECT_EQ(value, x[2]); grid.GetValue(0, 3, &value); EXPECT_EQ(value, x[2]); grid.GetValue(1, 3, &value); EXPECT_EQ(value, x[5]); grid.GetValue(2, 3, &value); EXPECT_EQ(value, x[5]); grid.GetValue(2, 2, &value); EXPECT_EQ(value, x[5]); grid.GetValue(2, 1, &value); EXPECT_EQ(value, x[4]); grid.GetValue(2, 0, &value); EXPECT_EQ(value, x[3]); grid.GetValue(2, -1, &value); EXPECT_EQ(value, x[3]); grid.GetValue(1, -1, &value); EXPECT_EQ(value, x[3]); grid.GetValue(0, -1, &value); EXPECT_EQ(value, x[0]); } TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) { int x[] = {1, 4, 2, 8, 3, 12, 2, 8, 3, 12, 4, 16}; Grid2D grid(x, 0, 2, 0, 3); for (int r = 0; r < 2; ++r) { for (int c = 0; c < 3; ++c) { double value[2]; grid.GetValue(r, c, value); EXPECT_EQ(value[0], static_cast(r + c + 1)); EXPECT_EQ(value[1], static_cast(4 *(r + c + 1))); } } } TEST(Grid2D, TwoDataDimensionRowMajorStacked) { int x[] = {1, 2, 3, 2, 3, 4, 4, 8, 12, 8, 12, 16}; Grid2D grid(x, 0, 2, 0, 3); for (int r = 0; r < 2; ++r) { for (int c = 0; c < 3; ++c) { double value[2]; grid.GetValue(r, c, value); EXPECT_EQ(value[0], static_cast(r + c + 1)); EXPECT_EQ(value[1], static_cast(4 *(r + c + 1))); } } } TEST(Grid2D, TwoDataDimensionColMajorInterleaved) { int x[] = { 1, 4, 2, 8, 2, 8, 3, 12, 3, 12, 4, 16}; Grid2D grid(x, 0, 2, 0, 3); for (int r = 0; r < 2; ++r) { for (int c = 0; c < 3; ++c) { double value[2]; grid.GetValue(r, c, value); EXPECT_EQ(value[0], static_cast(r + c + 1)); EXPECT_EQ(value[1], static_cast(4 *(r + c + 1))); } } } TEST(Grid2D, TwoDataDimensionColMajorStacked) { int x[] = {1, 2, 2, 3, 3, 4, 4, 8, 8, 12, 12, 16}; Grid2D grid(x, 0, 2, 0, 3); for (int r = 0; r < 2; ++r) { for (int c = 0; c < 3; ++c) { double value[2]; grid.GetValue(r, c, value); EXPECT_EQ(value[0], static_cast(r + c + 1)); EXPECT_EQ(value[1], static_cast(4 *(r + c + 1))); } } } class CubicInterpolatorTest : public ::testing::Test { public: template void RunPolynomialInterpolationTest(const double a, const double b, const double c, const double d) { values_.reset(new double[kDataDimension * kNumSamples]); for (int x = 0; x < kNumSamples; ++x) { for (int dim = 0; dim < kDataDimension; ++dim) { values_[x * kDataDimension + dim] = (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); } } Grid1D grid(values_.get(), 0, kNumSamples); CubicInterpolator > interpolator(grid); // Check values in the all the cells but the first and the last // ones. In these cells, the interpolated function values should // match exactly the values of the function being interpolated. // // On the boundary, we extrapolate the values of the function on // the basis of its first derivative, so we do not expect the // function values and its derivatives not to match. for (int j = 0; j < kNumTestSamples; ++j) { const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j; double expected_f[kDataDimension], expected_dfdx[kDataDimension]; double f[kDataDimension], dfdx[kDataDimension]; for (int dim = 0; dim < kDataDimension; ++dim) { expected_f[dim] = (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); expected_dfdx[dim] = (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c); } interpolator.Evaluate(x, f, dfdx); for (int dim = 0; dim < kDataDimension; ++dim) { EXPECT_NEAR(f[dim], expected_f[dim], kTolerance) << "x: " << x << " dim: " << dim << " actual f(x): " << expected_f[dim] << " estimated f(x): " << f[dim]; EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance) << "x: " << x << " dim: " << dim << " actual df(x)/dx: " << expected_dfdx[dim] << " estimated df(x)/dx: " << dfdx[dim]; } } } private: static const int kNumSamples = 10; static const int kNumTestSamples = 100; scoped_array values_; }; TEST_F(CubicInterpolatorTest, ConstantFunction) { RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5); RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5); RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5); } TEST_F(CubicInterpolatorTest, LinearFunction) { RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5); RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5); RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5); } TEST_F(CubicInterpolatorTest, QuadraticFunction) { RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5); RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5); RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5); } TEST(CubicInterpolator, JetEvaluation) { const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0}; Grid1D grid(values, 0, 4); CubicInterpolator > interpolator(grid); double f[2], dfdx[2]; const double x = 2.5; interpolator.Evaluate(x, f, dfdx); // Create a Jet with the same scalar part as x, so that the output // Jet will be evaluated at x. Jet x_jet; x_jet.a = x; x_jet.v(0) = 1.0; x_jet.v(1) = 1.1; x_jet.v(2) = 1.2; x_jet.v(3) = 1.3; Jet f_jets[2]; interpolator.Evaluate(x_jet, f_jets); // Check that the scalar part of the Jet is f(x). EXPECT_EQ(f_jets[0].a, f[0]); EXPECT_EQ(f_jets[1].a, f[1]); // Check that the derivative part of the Jet is dfdx * x_jet.v // by the chain rule. EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance); EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance); } class BiCubicInterpolatorTest : public ::testing::Test { public: template void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) { values_.reset(new double[kNumRows * kNumCols * kDataDimension]); coeff_ = coeff; double* v = values_.get(); for (int r = 0; r < kNumRows; ++r) { for (int c = 0; c < kNumCols; ++c) { for (int dim = 0; dim < kDataDimension; ++dim) { *v++ = (dim * dim + 1) * EvaluateF(r, c); } } } Grid2D grid(values_.get(), 0, kNumRows, 0, kNumCols); BiCubicInterpolator > interpolator(grid); for (int j = 0; j < kNumRowSamples; ++j) { const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j; for (int k = 0; k < kNumColSamples; ++k) { const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k; double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension]; interpolator.Evaluate(r, c, f, dfdr, dfdc); for (int dim = 0; dim < kDataDimension; ++dim) { EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance); EXPECT_NEAR(dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance); EXPECT_NEAR(dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance); } } } } private: double EvaluateF(double r, double c) { Eigen::Vector3d x; x(0) = r; x(1) = c; x(2) = 1; return x.transpose() * coeff_ * x; } double EvaluatedFdr(double r, double c) { Eigen::Vector3d x; x(0) = r; x(1) = c; x(2) = 1; return (coeff_.row(0) + coeff_.col(0).transpose()) * x; } double EvaluatedFdc(double r, double c) { Eigen::Vector3d x; x(0) = r; x(1) = c; x(2) = 1; return (coeff_.row(1) + coeff_.col(1).transpose()) * x; } Eigen::Matrix3d coeff_; static const int kNumRows = 10; static const int kNumCols = 10; static const int kNumRowSamples = 100; static const int kNumColSamples = 100; scoped_array values_; }; TEST_F(BiCubicInterpolatorTest, ZeroFunction) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree00Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree01Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 2) = 0.1; coeff(2, 0) = 0.1; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree10Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 1) = 0.1; coeff(1, 0) = 0.1; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree11Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 1) = 0.1; coeff(1, 0) = 0.1; coeff(0, 2) = 0.2; coeff(2, 0) = 0.2; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree12Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 1) = 0.1; coeff(1, 0) = 0.1; coeff(0, 2) = 0.2; coeff(2, 0) = 0.2; coeff(1, 1) = 0.3; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree21Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 1) = 0.1; coeff(1, 0) = 0.1; coeff(0, 2) = 0.2; coeff(2, 0) = 0.2; coeff(0, 0) = 0.3; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST_F(BiCubicInterpolatorTest, Degree22Function) { Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); coeff(2, 2) = 1.0; coeff(0, 1) = 0.1; coeff(1, 0) = 0.1; coeff(0, 2) = 0.2; coeff(2, 0) = 0.2; coeff(0, 0) = 0.3; coeff(0, 1) = -0.4; coeff(1, 0) = -0.4; RunPolynomialInterpolationTest<1>(coeff); RunPolynomialInterpolationTest<2>(coeff); RunPolynomialInterpolationTest<3>(coeff); } TEST(BiCubicInterpolator, JetEvaluation) { const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 1.0}; Grid2D grid(values, 0, 2, 0, 4); BiCubicInterpolator > interpolator(grid); double f[2], dfdr[2], dfdc[2]; const double r = 0.5; const double c = 2.5; interpolator.Evaluate(r, c, f, dfdr, dfdc); // Create a Jet with the same scalar part as x, so that the output // Jet will be evaluated at x. Jet r_jet; r_jet.a = r; r_jet.v(0) = 1.0; r_jet.v(1) = 1.1; r_jet.v(2) = 1.2; r_jet.v(3) = 1.3; Jet c_jet; c_jet.a = c; c_jet.v(0) = 2.0; c_jet.v(1) = 3.1; c_jet.v(2) = 4.2; c_jet.v(3) = 5.3; Jet f_jets[2]; interpolator.Evaluate(r_jet, c_jet, f_jets); EXPECT_EQ(f_jets[0].a, f[0]); EXPECT_EQ(f_jets[1].a, f[1]); EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(), 0.0, kTolerance); EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(), 0.0, kTolerance); } } // namespace internal } // namespace ceres