// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include #include "ceres/autodiff_local_parameterization.h" #include "ceres/fpclassify.h" #include "ceres/householder_vector.h" #include "ceres/internal/autodiff.h" #include "ceres/internal/eigen.h" #include "ceres/local_parameterization.h" #include "ceres/random.h" #include "ceres/rotation.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(IdentityParameterization, EverythingTest) { IdentityParameterization parameterization(3); EXPECT_EQ(parameterization.GlobalSize(), 3); EXPECT_EQ(parameterization.LocalSize(), 3); double x[3] = {1.0, 2.0, 3.0}; double delta[3] = {0.0, 1.0, 2.0}; double x_plus_delta[3] = {0.0, 0.0, 0.0}; parameterization.Plus(x, delta, x_plus_delta); EXPECT_EQ(x_plus_delta[0], 1.0); EXPECT_EQ(x_plus_delta[1], 3.0); EXPECT_EQ(x_plus_delta[2], 5.0); double jacobian[9]; parameterization.ComputeJacobian(x, jacobian); int k = 0; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j, ++k) { EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); } } Matrix global_matrix = Matrix::Ones(10, 3); Matrix local_matrix = Matrix::Zero(10, 3); parameterization.MultiplyByJacobian(x, 10, global_matrix.data(), local_matrix.data()); EXPECT_EQ((local_matrix - global_matrix).norm(), 0.0); } TEST(SubsetParameterization, DeathTests) { std::vector constant_parameters; EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(1, constant_parameters), "at least"); constant_parameters.push_back(0); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(1, constant_parameters), "Number of parameters"); constant_parameters.push_back(1); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(2, constant_parameters), "Number of parameters"); constant_parameters.push_back(1); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(2, constant_parameters), "duplicates"); } TEST(SubsetParameterization, NormalFunctionTest) { const int kGlobalSize = 4; const int kLocalSize = 3; double x[kGlobalSize] = {1.0, 2.0, 3.0, 4.0}; for (int i = 0; i < kGlobalSize; ++i) { std::vector constant_parameters; constant_parameters.push_back(i); SubsetParameterization parameterization(kGlobalSize, constant_parameters); double delta[kLocalSize] = {1.0, 2.0, 3.0}; double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0}; parameterization.Plus(x, delta, x_plus_delta); int k = 0; for (int j = 0; j < kGlobalSize; ++j) { if (j == i) { EXPECT_EQ(x_plus_delta[j], x[j]); } else { EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); } } double jacobian[kGlobalSize * kLocalSize]; parameterization.ComputeJacobian(x, jacobian); int delta_cursor = 0; int jacobian_cursor = 0; for (int j = 0; j < kGlobalSize; ++j) { if (j != i) { for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); } ++delta_cursor; } else { for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { EXPECT_EQ(jacobian[jacobian_cursor], 0.0); } } } Matrix global_matrix = Matrix::Ones(10, kGlobalSize); for (int row = 0; row < kGlobalSize; ++row) { for (int col = 0; col < kGlobalSize; ++col) { global_matrix(row, col) = col; } } Matrix local_matrix = Matrix::Zero(10, kLocalSize); parameterization.MultiplyByJacobian(x, 10, global_matrix.data(), local_matrix.data()); Matrix expected_local_matrix = global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0); } } // Functor needed to implement automatically differentiated Plus for // quaternions. struct QuaternionPlus { template bool operator()(const T* x, const T* delta, T* x_plus_delta) const { const T squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; T q_delta[4]; if (squared_norm_delta > T(0.0)) { T norm_delta = sqrt(squared_norm_delta); const T sin_delta_by_delta = sin(norm_delta) / norm_delta; q_delta[0] = cos(norm_delta); q_delta[1] = sin_delta_by_delta * delta[0]; q_delta[2] = sin_delta_by_delta * delta[1]; q_delta[3] = sin_delta_by_delta * delta[2]; } else { // We do not just use q_delta = [1,0,0,0] here because that is a // constant and when used for automatic differentiation will // lead to a zero derivative. Instead we take a first order // approximation and evaluate it at zero. q_delta[0] = T(1.0); q_delta[1] = delta[0]; q_delta[2] = delta[1]; q_delta[3] = delta[2]; } QuaternionProduct(q_delta, x, x_plus_delta); return true; } }; void QuaternionParameterizationTestHelper(const double* x, const double* delta, const double* q_delta) { const int kGlobalSize = 4; const int kLocalSize = 3; const double kTolerance = 1e-14; double x_plus_delta_ref[kGlobalSize] = {0.0, 0.0, 0.0, 0.0}; QuaternionProduct(q_delta, x, x_plus_delta_ref); double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0, 0.0}; QuaternionParameterization parameterization; parameterization.Plus(x, delta, x_plus_delta); for (int i = 0; i < kGlobalSize; ++i) { EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance); } const double x_plus_delta_norm = sqrt(x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] + x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]); EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); double jacobian_ref[12]; double zero_delta[kLocalSize] = {0.0, 0.0, 0.0}; const double* parameters[2] = {x, zero_delta}; double* jacobian_array[2] = { NULL, jacobian_ref }; // Autodiff jacobian at delta_x = 0. internal::AutoDiff::Differentiate(QuaternionPlus(), parameters, kGlobalSize, x_plus_delta, jacobian_array); double jacobian[12]; parameterization.ComputeJacobian(x, jacobian); for (int i = 0; i < 12; ++i) { EXPECT_TRUE(IsFinite(jacobian[i])); EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) << "Jacobian mismatch: i = " << i << "\n Expected \n" << ConstMatrixRef(jacobian_ref, kGlobalSize, kLocalSize) << "\n Actual \n" << ConstMatrixRef(jacobian, kGlobalSize, kLocalSize); } Matrix global_matrix = Matrix::Random(10, kGlobalSize); Matrix local_matrix = Matrix::Zero(10, kLocalSize); parameterization.MultiplyByJacobian(x, 10, global_matrix.data(), local_matrix.data()); Matrix expected_local_matrix = global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0); } template void Normalize(double* x) { VectorRef(x, N).normalize(); } TEST(QuaternionParameterization, ZeroTest) { double x[4] = {0.5, 0.5, 0.5, 0.5}; double delta[3] = {0.0, 0.0, 0.0}; double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; QuaternionParameterizationTestHelper(x, delta, q_delta); } TEST(QuaternionParameterization, NearZeroTest) { double x[4] = {0.52, 0.25, 0.15, 0.45}; Normalize<4>(x); double delta[3] = {0.24, 0.15, 0.10}; for (int i = 0; i < 3; ++i) { delta[i] = delta[i] * 1e-14; } double q_delta[4]; q_delta[0] = 1.0; q_delta[1] = delta[0]; q_delta[2] = delta[1]; q_delta[3] = delta[2]; QuaternionParameterizationTestHelper(x, delta, q_delta); } TEST(QuaternionParameterization, AwayFromZeroTest) { double x[4] = {0.52, 0.25, 0.15, 0.45}; Normalize<4>(x); double delta[3] = {0.24, 0.15, 0.10}; const double delta_norm = sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); double q_delta[4]; q_delta[0] = cos(delta_norm); q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; QuaternionParameterizationTestHelper(x, delta, q_delta); } // Functor needed to implement automatically differentiated Plus for // homogeneous vectors. Note this explicitly defined for vectors of size 4. struct HomogeneousVectorParameterizationPlus { template bool operator()(const Scalar* p_x, const Scalar* p_delta, Scalar* p_x_plus_delta) const { Eigen::Map > x(p_x); Eigen::Map > delta(p_delta); Eigen::Map > x_plus_delta(p_x_plus_delta); const Scalar squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; Eigen::Matrix y; Scalar one_half(0.5); if (squared_norm_delta > Scalar(0.0)) { Scalar norm_delta = sqrt(squared_norm_delta); Scalar norm_delta_div_2 = 0.5 * norm_delta; const Scalar sin_delta_by_delta = sin(norm_delta_div_2) / norm_delta_div_2; y[0] = sin_delta_by_delta * delta[0] * one_half; y[1] = sin_delta_by_delta * delta[1] * one_half; y[2] = sin_delta_by_delta * delta[2] * one_half; y[3] = cos(norm_delta_div_2); } else { // We do not just use y = [0,0,0,1] here because that is a // constant and when used for automatic differentiation will // lead to a zero derivative. Instead we take a first order // approximation and evaluate it at zero. y[0] = delta[0] * one_half; y[1] = delta[1] * one_half; y[2] = delta[2] * one_half; y[3] = Scalar(1.0); } Eigen::Matrix v(4); Scalar beta; internal::ComputeHouseholderVector(x, &v, &beta); x_plus_delta = x.norm() * (y - v * (beta * v.dot(y))); return true; } }; void HomogeneousVectorParameterizationHelper(const double* x, const double* delta) { const double kTolerance = 1e-14; HomogeneousVectorParameterization homogeneous_vector_parameterization(4); // Ensure the update maintains the norm. double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; homogeneous_vector_parameterization.Plus(x, delta, x_plus_delta); const double x_plus_delta_norm = sqrt(x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] + x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]); const double x_norm = sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]); EXPECT_NEAR(x_plus_delta_norm, x_norm, kTolerance); // Autodiff jacobian at delta_x = 0. AutoDiffLocalParameterization autodiff_jacobian; double jacobian_autodiff[12]; double jacobian_analytic[12]; homogeneous_vector_parameterization.ComputeJacobian(x, jacobian_analytic); autodiff_jacobian.ComputeJacobian(x, jacobian_autodiff); for (int i = 0; i < 12; ++i) { EXPECT_TRUE(ceres::IsFinite(jacobian_analytic[i])); EXPECT_NEAR(jacobian_analytic[i], jacobian_autodiff[i], kTolerance) << "Jacobian mismatch: i = " << i << ", " << jacobian_analytic[i] << " " << jacobian_autodiff[i]; } } TEST(HomogeneousVectorParameterization, ZeroTest) { double x[4] = {0.0, 0.0, 0.0, 1.0}; Normalize<4>(x); double delta[3] = {0.0, 0.0, 0.0}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, NearZeroTest1) { double x[4] = {1e-5, 1e-5, 1e-5, 1.0}; Normalize<4>(x); double delta[3] = {0.0, 1.0, 0.0}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, NearZeroTest2) { double x[4] = {0.001, 0.0, 0.0, 0.0}; double delta[3] = {0.0, 1.0, 0.0}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, AwayFromZeroTest1) { double x[4] = {0.52, 0.25, 0.15, 0.45}; Normalize<4>(x); double delta[3] = {0.0, 1.0, -0.5}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, AwayFromZeroTest2) { double x[4] = {0.87, -0.25, -0.34, 0.45}; Normalize<4>(x); double delta[3] = {0.0, 0.0, -0.5}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, AwayFromZeroTest3) { double x[4] = {0.0, 0.0, 0.0, 2.0}; double delta[3] = {0.0, 0.0, 0}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, AwayFromZeroTest4) { double x[4] = {0.2, -1.0, 0.0, 2.0}; double delta[3] = {1.4, 0.0, -0.5}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, AwayFromZeroTest5) { double x[4] = {2.0, 0.0, 0.0, 0.0}; double delta[3] = {1.4, 0.0, -0.5}; HomogeneousVectorParameterizationHelper(x, delta); } TEST(HomogeneousVectorParameterization, DeathTests) { EXPECT_DEATH_IF_SUPPORTED(HomogeneousVectorParameterization x(1), "size"); } class ProductParameterizationTest : public ::testing::Test { protected : virtual void SetUp() { const int global_size1 = 5; std::vector constant_parameters1; constant_parameters1.push_back(2); param1_.reset(new SubsetParameterization(global_size1, constant_parameters1)); const int global_size2 = 3; std::vector constant_parameters2; constant_parameters2.push_back(0); constant_parameters2.push_back(1); param2_.reset(new SubsetParameterization(global_size2, constant_parameters2)); const int global_size3 = 4; std::vector constant_parameters3; constant_parameters3.push_back(1); param3_.reset(new SubsetParameterization(global_size3, constant_parameters3)); const int global_size4 = 2; std::vector constant_parameters4; constant_parameters4.push_back(1); param4_.reset(new SubsetParameterization(global_size4, constant_parameters4)); } scoped_ptr param1_; scoped_ptr param2_; scoped_ptr param3_; scoped_ptr param4_; }; TEST_F(ProductParameterizationTest, LocalAndGlobalSize2) { LocalParameterization* param1 = param1_.release(); LocalParameterization* param2 = param2_.release(); ProductParameterization product_param(param1, param2); EXPECT_EQ(product_param.LocalSize(), param1->LocalSize() + param2->LocalSize()); EXPECT_EQ(product_param.GlobalSize(), param1->GlobalSize() + param2->GlobalSize()); } TEST_F(ProductParameterizationTest, LocalAndGlobalSize3) { LocalParameterization* param1 = param1_.release(); LocalParameterization* param2 = param2_.release(); LocalParameterization* param3 = param3_.release(); ProductParameterization product_param(param1, param2, param3); EXPECT_EQ(product_param.LocalSize(), param1->LocalSize() + param2->LocalSize() + param3->LocalSize()); EXPECT_EQ(product_param.GlobalSize(), param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize()); } TEST_F(ProductParameterizationTest, LocalAndGlobalSize4) { LocalParameterization* param1 = param1_.release(); LocalParameterization* param2 = param2_.release(); LocalParameterization* param3 = param3_.release(); LocalParameterization* param4 = param4_.release(); ProductParameterization product_param(param1, param2, param3, param4); EXPECT_EQ(product_param.LocalSize(), param1->LocalSize() + param2->LocalSize() + param3->LocalSize() + param4->LocalSize()); EXPECT_EQ(product_param.GlobalSize(), param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize() + param4->GlobalSize()); } TEST_F(ProductParameterizationTest, Plus) { LocalParameterization* param1 = param1_.release(); LocalParameterization* param2 = param2_.release(); LocalParameterization* param3 = param3_.release(); LocalParameterization* param4 = param4_.release(); ProductParameterization product_param(param1, param2, param3, param4); std::vector x(product_param.GlobalSize(), 0.0); std::vector delta(product_param.LocalSize(), 0.0); std::vector x_plus_delta_expected(product_param.GlobalSize(), 0.0); std::vector x_plus_delta(product_param.GlobalSize(), 0.0); for (int i = 0; i < product_param.GlobalSize(); ++i) { x[i] = RandNormal(); } for (int i = 0; i < product_param.LocalSize(); ++i) { delta[i] = RandNormal(); } EXPECT_TRUE(product_param.Plus(&x[0], &delta[0], &x_plus_delta_expected[0])); int x_cursor = 0; int delta_cursor = 0; EXPECT_TRUE(param1->Plus(&x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); x_cursor += param1->GlobalSize(); delta_cursor += param1->LocalSize(); EXPECT_TRUE(param2->Plus(&x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); x_cursor += param2->GlobalSize(); delta_cursor += param2->LocalSize(); EXPECT_TRUE(param3->Plus(&x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); x_cursor += param3->GlobalSize(); delta_cursor += param3->LocalSize(); EXPECT_TRUE(param4->Plus(&x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); x_cursor += param4->GlobalSize(); delta_cursor += param4->LocalSize(); for (int i = 0; i < x.size(); ++i) { EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]); } } TEST_F(ProductParameterizationTest, ComputeJacobian) { LocalParameterization* param1 = param1_.release(); LocalParameterization* param2 = param2_.release(); LocalParameterization* param3 = param3_.release(); LocalParameterization* param4 = param4_.release(); ProductParameterization product_param(param1, param2, param3, param4); std::vector x(product_param.GlobalSize(), 0.0); for (int i = 0; i < product_param.GlobalSize(); ++i) { x[i] = RandNormal(); } Matrix jacobian = Matrix::Random(product_param.GlobalSize(), product_param.LocalSize()); EXPECT_TRUE(product_param.ComputeJacobian(&x[0], jacobian.data())); int x_cursor = 0; int delta_cursor = 0; Matrix jacobian1(param1->GlobalSize(), param1->LocalSize()); EXPECT_TRUE(param1->ComputeJacobian(&x[x_cursor], jacobian1.data())); jacobian.block(x_cursor, delta_cursor, param1->GlobalSize(), param1->LocalSize()) -= jacobian1; x_cursor += param1->GlobalSize(); delta_cursor += param1->LocalSize(); Matrix jacobian2(param2->GlobalSize(), param2->LocalSize()); EXPECT_TRUE(param2->ComputeJacobian(&x[x_cursor], jacobian2.data())); jacobian.block(x_cursor, delta_cursor, param2->GlobalSize(), param2->LocalSize()) -= jacobian2; x_cursor += param2->GlobalSize(); delta_cursor += param2->LocalSize(); Matrix jacobian3(param3->GlobalSize(), param3->LocalSize()); EXPECT_TRUE(param3->ComputeJacobian(&x[x_cursor], jacobian3.data())); jacobian.block(x_cursor, delta_cursor, param3->GlobalSize(), param3->LocalSize()) -= jacobian3; x_cursor += param3->GlobalSize(); delta_cursor += param3->LocalSize(); Matrix jacobian4(param4->GlobalSize(), param4->LocalSize()); EXPECT_TRUE(param4->ComputeJacobian(&x[x_cursor], jacobian4.data())); jacobian.block(x_cursor, delta_cursor, param4->GlobalSize(), param4->LocalSize()) -= jacobian4; x_cursor += param4->GlobalSize(); delta_cursor += param4->LocalSize(); EXPECT_NEAR(jacobian.norm(), 0.0, std::numeric_limits::epsilon()); } } // namespace internal } // namespace ceres