// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_H_ #define CERES_INTERNAL_SCHUR_ELIMINATOR_H_ #include #include #include "ceres/mutex.h" #include "ceres/block_random_access_matrix.h" #include "ceres/block_sparse_matrix.h" #include "ceres/block_structure.h" #include "ceres/linear_solver.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" namespace ceres { namespace internal { // Classes implementing the SchurEliminatorBase interface implement // variable elimination for linear least squares problems. Assuming // that the input linear system Ax = b can be partitioned into // // E y + F z = b // // Where x = [y;z] is a partition of the variables. The paritioning // of the variables is such that, E'E is a block diagonal matrix. Or // in other words, the parameter blocks in E form an independent set // of the of the graph implied by the block matrix A'A. Then, this // class provides the functionality to compute the Schur complement // system // // S z = r // // where // // S = F'F - F'E (E'E)^{-1} E'F and r = F'b - F'E(E'E)^(-1) E'b // // This is the Eliminate operation, i.e., construct the linear system // obtained by eliminating the variables in E. // // The eliminator also provides the reverse functionality, i.e. given // values for z it can back substitute for the values of y, by solving the // linear system // // Ey = b - F z // // which is done by observing that // // y = (E'E)^(-1) [E'b - E'F z] // // The eliminator has a number of requirements. // // The rows of A are ordered so that for every variable block in y, // all the rows containing that variable block occur as a vertically // contiguous block. i.e the matrix A looks like // // E F chunk // A = [ y1 0 0 0 | z1 0 0 0 z5] 1 // [ y1 0 0 0 | z1 z2 0 0 0] 1 // [ 0 y2 0 0 | 0 0 z3 0 0] 2 // [ 0 0 y3 0 | z1 z2 z3 z4 z5] 3 // [ 0 0 y3 0 | z1 0 0 0 z5] 3 // [ 0 0 0 y4 | 0 0 0 0 z5] 4 // [ 0 0 0 y4 | 0 z2 0 0 0] 4 // [ 0 0 0 y4 | 0 0 0 0 0] 4 // [ 0 0 0 0 | z1 0 0 0 0] non chunk blocks // [ 0 0 0 0 | 0 0 z3 z4 z5] non chunk blocks // // This structure should be reflected in the corresponding // CompressedRowBlockStructure object associated with A. The linear // system Ax = b should either be well posed or the array D below // should be non-null and the diagonal matrix corresponding to it // should be non-singular. For simplicity of exposition only the case // with a null D is described. // // The usual way to do the elimination is as follows. Starting with // // E y + F z = b // // we can form the normal equations, // // E'E y + E'F z = E'b // F'E y + F'F z = F'b // // multiplying both sides of the first equation by (E'E)^(-1) and then // by F'E we get // // F'E y + F'E (E'E)^(-1) E'F z = F'E (E'E)^(-1) E'b // F'E y + F'F z = F'b // // now subtracting the two equations we get // // [FF' - F'E (E'E)^(-1) E'F] z = F'b - F'E(E'E)^(-1) E'b // // Instead of forming the normal equations and operating on them as // general sparse matrices, the algorithm here deals with one // parameter block in y at a time. The rows corresponding to a single // parameter block yi are known as a chunk, and the algorithm operates // on one chunk at a time. The mathematics remains the same since the // reduced linear system can be shown to be the sum of the reduced // linear systems for each chunk. This can be seen by observing two // things. // // 1. E'E is a block diagonal matrix. // // 2. When E'F is computed, only the terms within a single chunk // interact, i.e for y1 column blocks when transposed and multiplied // with F, the only non-zero contribution comes from the blocks in // chunk1. // // Thus, the reduced linear system // // FF' - F'E (E'E)^(-1) E'F // // can be re-written as // // sum_k F_k F_k' - F_k'E_k (E_k'E_k)^(-1) E_k' F_k // // Where the sum is over chunks and E_k'E_k is dense matrix of size y1 // x y1. // // Advanced usage. Uptil now it has been assumed that the user would // be interested in all of the Schur Complement S. However, it is also // possible to use this eliminator to obtain an arbitrary submatrix of // the full Schur complement. When the eliminator is generating the // blocks of S, it asks the RandomAccessBlockMatrix instance passed to // it if it has storage for that block. If it does, the eliminator // computes/updates it, if not it is skipped. This is useful when one // is interested in constructing a preconditioner based on the Schur // Complement, e.g., computing the block diagonal of S so that it can // be used as a preconditioner for an Iterative Substructuring based // solver [See Agarwal et al, Bundle Adjustment in the Large, ECCV // 2008 for an example of such use]. // // Example usage: Please see schur_complement_solver.cc class SchurEliminatorBase { public: virtual ~SchurEliminatorBase() {} // Initialize the eliminator. It is the user's responsibilty to call // this function before calling Eliminate or BackSubstitute. It is // also the caller's responsibilty to ensure that the // CompressedRowBlockStructure object passed to this method is the // same one (or is equivalent to) the one associated with the // BlockSparseMatrix objects below. virtual void Init(int num_eliminate_blocks, const CompressedRowBlockStructure* bs) = 0; // Compute the Schur complement system from the augmented linear // least squares problem [A;D] x = [b;0]. The left hand side and the // right hand side of the reduced linear system are returned in lhs // and rhs respectively. // // It is the caller's responsibility to construct and initialize // lhs. Depending upon the structure of the lhs object passed here, // the full or a submatrix of the Schur complement will be computed. // // Since the Schur complement is a symmetric matrix, only the upper // triangular part of the Schur complement is computed. virtual void Eliminate(const BlockSparseMatrix* A, const double* b, const double* D, BlockRandomAccessMatrix* lhs, double* rhs) = 0; // Given values for the variables z in the F block of A, solve for // the optimal values of the variables y corresponding to the E // block in A. virtual void BackSubstitute(const BlockSparseMatrix* A, const double* b, const double* D, const double* z, double* y) = 0; // Factory static SchurEliminatorBase* Create(const LinearSolver::Options& options); }; // Templated implementation of the SchurEliminatorBase interface. The // templating is on the sizes of the row, e and f blocks sizes in the // input matrix. In many problems, the sizes of one or more of these // blocks are constant, in that case, its worth passing these // parameters as template arguments so that they are visible to the // compiler and can be used for compile time optimization of the low // level linear algebra routines. // // This implementation is mulithreaded using OpenMP. The level of // parallelism is controlled by LinearSolver::Options::num_threads. template class SchurEliminator : public SchurEliminatorBase { public: explicit SchurEliminator(const LinearSolver::Options& options) : num_threads_(options.num_threads) { } // SchurEliminatorBase Interface virtual ~SchurEliminator(); virtual void Init(int num_eliminate_blocks, const CompressedRowBlockStructure* bs); virtual void Eliminate(const BlockSparseMatrix* A, const double* b, const double* D, BlockRandomAccessMatrix* lhs, double* rhs); virtual void BackSubstitute(const BlockSparseMatrix* A, const double* b, const double* D, const double* z, double* y); private: // Chunk objects store combinatorial information needed to // efficiently eliminate a whole chunk out of the least squares // problem. Consider the first chunk in the example matrix above. // // [ y1 0 0 0 | z1 0 0 0 z5] // [ y1 0 0 0 | z1 z2 0 0 0] // // One of the intermediate quantities that needs to be calculated is // for each row the product of the y block transposed with the // non-zero z block, and the sum of these blocks across rows. A // temporary array "buffer_" is used for computing and storing them // and the buffer_layout maps the indices of the z-blocks to // position in the buffer_ array. The size of the chunk is the // number of row blocks/residual blocks for the particular y block // being considered. // // For the example chunk shown above, // // size = 2 // // The entries of buffer_layout will be filled in the following order. // // buffer_layout[z1] = 0 // buffer_layout[z5] = y1 * z1 // buffer_layout[z2] = y1 * z1 + y1 * z5 typedef std::map BufferLayoutType; struct Chunk { Chunk() : size(0) {} int size; int start; BufferLayoutType buffer_layout; }; void ChunkDiagonalBlockAndGradient( const Chunk& chunk, const BlockSparseMatrix* A, const double* b, int row_block_counter, typename EigenTypes::Matrix* eet, double* g, double* buffer, BlockRandomAccessMatrix* lhs); void UpdateRhs(const Chunk& chunk, const BlockSparseMatrix* A, const double* b, int row_block_counter, const double* inverse_ete_g, double* rhs); void ChunkOuterProduct(const CompressedRowBlockStructure* bs, const Matrix& inverse_eet, const double* buffer, const BufferLayoutType& buffer_layout, BlockRandomAccessMatrix* lhs); void EBlockRowOuterProduct(const BlockSparseMatrix* A, int row_block_index, BlockRandomAccessMatrix* lhs); void NoEBlockRowsUpdate(const BlockSparseMatrix* A, const double* b, int row_block_counter, BlockRandomAccessMatrix* lhs, double* rhs); void NoEBlockRowOuterProduct(const BlockSparseMatrix* A, int row_block_index, BlockRandomAccessMatrix* lhs); int num_eliminate_blocks_; // Block layout of the columns of the reduced linear system. Since // the f blocks can be of varying size, this vector stores the // position of each f block in the row/col of the reduced linear // system. Thus lhs_row_layout_[i] is the row/col position of the // i^th f block. std::vector lhs_row_layout_; // Combinatorial structure of the chunks in A. For more information // see the documentation of the Chunk object above. std::vector chunks_; // TODO(sameeragarwal): The following two arrays contain per-thread // storage. They should be refactored into a per thread struct. // Buffer to store the products of the y and z blocks generated // during the elimination phase. buffer_ is of size num_threads * // buffer_size_. Each thread accesses the chunk // // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_] // scoped_array buffer_; // Buffer to store per thread matrix matrix products used by // ChunkOuterProduct. Like buffer_ it is of size num_threads * // buffer_size_. Each thread accesses the chunk // // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_ -1] // scoped_array chunk_outer_product_buffer_; int buffer_size_; int num_threads_; int uneliminated_row_begins_; // Locks for the blocks in the right hand side of the reduced linear // system. std::vector rhs_locks_; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_H_