// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include #include "ceres/ordered_groups.h" #include "ceres/problem_impl.h" #include "ceres/sized_cost_function.h" #include "ceres/solver.h" #include "ceres/trust_region_preprocessor.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(TrustRegionPreprocessor, ZeroProblem) { ProblemImpl problem; Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); } TEST(TrustRegionPreprocessor, ProblemWithInvalidParameterBlock) { ProblemImpl problem; double x = std::numeric_limits::quiet_NaN(); problem.AddParameterBlock(&x, 1); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); } TEST(TrustRegionPreprocessor, ParameterBlockBoundsAreInvalid) { ProblemImpl problem; double x = 1.0; problem.AddParameterBlock(&x, 1); problem.SetParameterUpperBound(&x, 0, 1.0); problem.SetParameterLowerBound(&x, 0, 2.0); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); } TEST(TrustRegionPreprocessor, ParamterBlockIsInfeasible) { ProblemImpl problem; double x = 3.0; problem.AddParameterBlock(&x, 1); problem.SetParameterUpperBound(&x, 0, 1.0); problem.SetParameterLowerBound(&x, 0, 2.0); problem.SetParameterBlockConstant(&x); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); } class FailingCostFunction : public SizedCostFunction<1, 1> { public: bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { return false; } }; TEST(TrustRegionPreprocessor, RemoveParameterBlocksFailed) { ProblemImpl problem; double x = 3.0; problem.AddResidualBlock(new FailingCostFunction, NULL, &x); problem.SetParameterBlockConstant(&x); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); } TEST(TrustRegionPreprocessor, RemoveParameterBlocksSucceeds) { ProblemImpl problem; double x = 3.0; problem.AddParameterBlock(&x, 1); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); } template class DummyCostFunction : public SizedCostFunction { public: bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { for (int i = 0; i < kNumResiduals; ++i) { residuals[i] = kNumResiduals * kNumResiduals + i; } if (jacobians == NULL) { return true; } if (jacobians[0] != NULL) { MatrixRef j(jacobians[0], kNumResiduals, N1); j.setOnes(); j *= kNumResiduals * N1; } if (N2 == 0) { return true; } if (jacobians[1] != NULL) { MatrixRef j(jacobians[1], kNumResiduals, N2); j.setOnes(); j *= kNumResiduals * N2; } if (N3 == 0) { return true; } if (jacobians[2] != NULL) { MatrixRef j(jacobians[2], kNumResiduals, N3); j.setOnes(); j *= kNumResiduals * N3; } return true; } }; class LinearSolverAndEvaluatorCreationTest : public ::testing::Test { public: virtual void SetUp() { x_ = 1.0; y_ = 1.0; z_ = 1.0; problem_.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &x_, &y_); problem_.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &y_, &z_); } void PreprocessForGivenLinearSolverAndVerify( const LinearSolverType linear_solver_type) { Solver::Options options; options.linear_solver_type = linear_solver_type; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_EQ(pp.options.linear_solver_type, linear_solver_type); EXPECT_EQ(pp.linear_solver_options.type, linear_solver_type); EXPECT_EQ(pp.evaluator_options.linear_solver_type, linear_solver_type); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); } protected: ProblemImpl problem_; double x_; double y_; double z_; }; TEST_F(LinearSolverAndEvaluatorCreationTest, DenseQR) { PreprocessForGivenLinearSolverAndVerify(DENSE_QR); } TEST_F(LinearSolverAndEvaluatorCreationTest, DenseNormalCholesky) { PreprocessForGivenLinearSolverAndVerify(DENSE_NORMAL_CHOLESKY); } TEST_F(LinearSolverAndEvaluatorCreationTest, DenseSchur) { PreprocessForGivenLinearSolverAndVerify(DENSE_SCHUR); } #if defined(CERES_USE_EIGEN_SPARSE) || \ !defined(CERES_NO_SUITESPARSE) || \ !defined(CERES_NO_CXSPARSE) TEST_F(LinearSolverAndEvaluatorCreationTest, SparseNormalCholesky) { PreprocessForGivenLinearSolverAndVerify(SPARSE_NORMAL_CHOLESKY); } #endif #if defined(CERES_USE_EIGEN_SPARSE) || \ !defined(CERES_NO_SUITESPARSE) || \ !defined(CERES_NO_CXSPARSE) TEST_F(LinearSolverAndEvaluatorCreationTest, SparseSchur) { PreprocessForGivenLinearSolverAndVerify(SPARSE_SCHUR); } #endif TEST_F(LinearSolverAndEvaluatorCreationTest, CGNR) { PreprocessForGivenLinearSolverAndVerify(CGNR); } TEST_F(LinearSolverAndEvaluatorCreationTest, IterativeSchur) { PreprocessForGivenLinearSolverAndVerify(ITERATIVE_SCHUR); } TEST_F(LinearSolverAndEvaluatorCreationTest, MinimizerIsAwareOfBounds) { problem_.SetParameterLowerBound(&x_, 0, 0.0); Solver::Options options; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_EQ(pp.options.linear_solver_type, options.linear_solver_type); EXPECT_EQ(pp.linear_solver_options.type, options.linear_solver_type); EXPECT_EQ(pp.evaluator_options.linear_solver_type, options.linear_solver_type); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); EXPECT_TRUE(pp.minimizer_options.is_constrained); } TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithBadOrdering) { Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering.reset(new ParameterBlockOrdering); options.linear_solver_ordering->AddElementToGroup(&x_, 0); options.linear_solver_ordering->AddElementToGroup(&y_, 0); options.linear_solver_ordering->AddElementToGroup(&z_, 1); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp)); } TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithGoodOrdering) { Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering.reset(new ParameterBlockOrdering); options.linear_solver_ordering->AddElementToGroup(&x_, 0); options.linear_solver_ordering->AddElementToGroup(&z_, 0); options.linear_solver_ordering->AddElementToGroup(&y_, 1); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR); EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR); EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); } TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithEmptyFirstEliminationGroup) { problem_.SetParameterBlockConstant(&x_); problem_.SetParameterBlockConstant(&z_); Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering.reset(new ParameterBlockOrdering); options.linear_solver_ordering->AddElementToGroup(&x_, 0); options.linear_solver_ordering->AddElementToGroup(&z_, 0); options.linear_solver_ordering->AddElementToGroup(&y_, 1); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_EQ(pp.options.linear_solver_type, DENSE_QR); EXPECT_EQ(pp.linear_solver_options.type, DENSE_QR); EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_QR); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); } TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithEmptySecondEliminationGroup) { problem_.SetParameterBlockConstant(&y_); Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering.reset(new ParameterBlockOrdering); options.linear_solver_ordering->AddElementToGroup(&x_, 0); options.linear_solver_ordering->AddElementToGroup(&z_, 0); options.linear_solver_ordering->AddElementToGroup(&y_, 1); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR); EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR); EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); } TEST(TrustRegionPreprocessorTest, InnerIterationsWithOneParameterBlock) { ProblemImpl problem; double x = 1.0; problem.AddResidualBlock(new DummyCostFunction<1, 1>, NULL, &x); Solver::Options options; options.use_inner_iterations = true; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); EXPECT_TRUE(pp.inner_iteration_minimizer.get() == NULL); } TEST_F(LinearSolverAndEvaluatorCreationTest, InnerIterationsWithTwoParameterBlocks) { Solver::Options options; options.use_inner_iterations = true; TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); EXPECT_TRUE(pp.inner_iteration_minimizer.get() != NULL); } TEST_F(LinearSolverAndEvaluatorCreationTest, InvalidInnerIterationsOrdering) { Solver::Options options; options.use_inner_iterations = true; options.inner_iteration_ordering.reset(new ParameterBlockOrdering); options.inner_iteration_ordering->AddElementToGroup(&x_, 0); options.inner_iteration_ordering->AddElementToGroup(&z_, 0); options.inner_iteration_ordering->AddElementToGroup(&y_, 0); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp)); } TEST_F(LinearSolverAndEvaluatorCreationTest, ValidInnerIterationsOrdering) { Solver::Options options; options.use_inner_iterations = true; options.inner_iteration_ordering.reset(new ParameterBlockOrdering); options.inner_iteration_ordering->AddElementToGroup(&x_, 0); options.inner_iteration_ordering->AddElementToGroup(&z_, 0); options.inner_iteration_ordering->AddElementToGroup(&y_, 1); TrustRegionPreprocessor preprocessor; PreprocessedProblem pp; EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); EXPECT_TRUE(pp.linear_solver.get() != NULL); EXPECT_TRUE(pp.evaluator.get() != NULL); EXPECT_TRUE(pp.inner_iteration_minimizer.get() != NULL); } } // namespace internal } // namespace ceres