// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H namespace Eigen { namespace internal { template struct FullPivHouseholderQRMatrixQReturnType; template struct traits > { typedef typename MatrixType::PlainObject ReturnType; }; } /** \ingroup QR_Module * * \class FullPivHouseholderQR * * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R * such that * \f[ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} * \f] * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an * upper triangular matrix. * * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. * * \sa MatrixBase::fullPivHouseholderQr() */ template class FullPivHouseholderQR { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; typedef internal::FullPivHouseholderQRMatrixQReturnType MatrixQReturnType; typedef typename internal::plain_diag_type::type HCoeffsType; typedef Matrix IntDiagSizeVectorType; typedef PermutationMatrix PermutationType; typedef typename internal::plain_row_type::type RowVectorType; typedef typename internal::plain_col_type::type ColVectorType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). */ FullPivHouseholderQR() : m_qr(), m_hCoeffs(), m_rows_transpositions(), m_cols_transpositions(), m_cols_permutation(), m_temp(), m_isInitialized(false), m_usePrescribedThreshold(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa FullPivHouseholderQR() */ FullPivHouseholderQR(Index rows, Index cols) : m_qr(rows, cols), m_hCoeffs((std::min)(rows,cols)), m_rows_transpositions((std::min)(rows,cols)), m_cols_transpositions((std::min)(rows,cols)), m_cols_permutation(cols), m_temp(cols), m_isInitialized(false), m_usePrescribedThreshold(false) {} /** \brief Constructs a QR factorization from a given matrix * * This constructor computes the QR factorization of the matrix \a matrix by calling * the method compute(). It is a short cut for: * * \code * FullPivHouseholderQR qr(matrix.rows(), matrix.cols()); * qr.compute(matrix); * \endcode * * \sa compute() */ FullPivHouseholderQR(const MatrixType& matrix) : m_qr(matrix.rows(), matrix.cols()), m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), m_cols_permutation(matrix.cols()), m_temp(matrix.cols()), m_isInitialized(false), m_usePrescribedThreshold(false) { compute(matrix); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * \c *this is the QR decomposition. * * \param b the right-hand-side of the equation to solve. * * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, * and an arbitrary solution otherwise. * * \note_about_checking_solutions * * \note_about_arbitrary_choice_of_solution * * Example: \include FullPivHouseholderQR_solve.cpp * Output: \verbinclude FullPivHouseholderQR_solve.out */ template inline const internal::solve_retval solve(const MatrixBase& b) const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return internal::solve_retval(*this, b.derived()); } /** \returns Expression object representing the matrix Q */ MatrixQReturnType matrixQ(void) const; /** \returns a reference to the matrix where the Householder QR decomposition is stored */ const MatrixType& matrixQR() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr; } FullPivHouseholderQR& compute(const MatrixType& matrix); /** \returns a const reference to the column permutation matrix */ const PermutationType& colsPermutation() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_cols_permutation; } /** \returns a const reference to the vector of indices representing the rows transpositions */ const IntDiagSizeVectorType& rowsTranspositions() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rows_transpositions; } /** \returns the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * One way to work around that is to use logAbsDeterminant() instead. * * \sa logAbsDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar absDeterminant() const; /** \returns the natural log of the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \note This method is useful to work around the risk of overflow/underflow that's inherent * to determinant computation. * * \sa absDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar logAbsDeterminant() const; /** \returns the rank of the matrix of which *this is the QR decomposition. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline Index rank() const { using std::abs; eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); Index result = 0; for(Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); return result; } /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline Index dimensionOfKernel() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return cols() - rank(); } /** \returns true if the matrix of which *this is the QR decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isInjective() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return rank() == cols(); } /** \returns true if the matrix of which *this is the QR decomposition represents a surjective * linear map; false otherwise. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isSurjective() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return rank() == rows(); } /** \returns true if the matrix of which *this is the QR decomposition is invertible. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isInvertible() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); } /** \returns the inverse of the matrix of which *this is the QR decomposition. * * \note If this matrix is not invertible, the returned matrix has undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. */ inline const internal::solve_retval inverse() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return internal::solve_retval (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); } inline Index rows() const { return m_qr.rows(); } inline Index cols() const { return m_qr.cols(); } /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. * * For advanced uses only. */ const HCoeffsType& hCoeffs() const { return m_hCoeffs; } /** Allows to prescribe a threshold to be used by certain methods, such as rank(), * who need to determine when pivots are to be considered nonzero. This is not used for the * QR decomposition itself. * * When it needs to get the threshold value, Eigen calls threshold(). By default, this * uses a formula to automatically determine a reasonable threshold. * Once you have called the present method setThreshold(const RealScalar&), * your value is used instead. * * \param threshold The new value to use as the threshold. * * A pivot will be considered nonzero if its absolute value is strictly greater than * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ * where maxpivot is the biggest pivot. * * If you want to come back to the default behavior, call setThreshold(Default_t) */ FullPivHouseholderQR& setThreshold(const RealScalar& threshold) { m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; return *this; } /** Allows to come back to the default behavior, letting Eigen use its default formula for * determining the threshold. * * You should pass the special object Eigen::Default as parameter here. * \code qr.setThreshold(Eigen::Default); \endcode * * See the documentation of setThreshold(const RealScalar&). */ FullPivHouseholderQR& setThreshold(Default_t) { m_usePrescribedThreshold = false; return *this; } /** Returns the threshold that will be used by certain methods such as rank(). * * See the documentation of setThreshold(const RealScalar&). */ RealScalar threshold() const { eigen_assert(m_isInitialized || m_usePrescribedThreshold); return m_usePrescribedThreshold ? m_prescribedThreshold // this formula comes from experimenting (see "LU precision tuning" thread on the list) // and turns out to be identical to Higham's formula used already in LDLt. : NumTraits::epsilon() * RealScalar(m_qr.diagonalSize()); } /** \returns the number of nonzero pivots in the QR decomposition. * Here nonzero is meant in the exact sense, not in a fuzzy sense. * So that notion isn't really intrinsically interesting, but it is * still useful when implementing algorithms. * * \sa rank() */ inline Index nonzeroPivots() const { eigen_assert(m_isInitialized && "LU is not initialized."); return m_nonzero_pivots; } /** \returns the absolute value of the biggest pivot, i.e. the biggest * diagonal coefficient of U. */ RealScalar maxPivot() const { return m_maxpivot; } protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } MatrixType m_qr; HCoeffsType m_hCoeffs; IntDiagSizeVectorType m_rows_transpositions; IntDiagSizeVectorType m_cols_transpositions; PermutationType m_cols_permutation; RowVectorType m_temp; bool m_isInitialized, m_usePrescribedThreshold; RealScalar m_prescribedThreshold, m_maxpivot; Index m_nonzero_pivots; RealScalar m_precision; Index m_det_pq; }; template typename MatrixType::RealScalar FullPivHouseholderQR::absDeterminant() const { using std::abs; eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return abs(m_qr.diagonal().prod()); } template typename MatrixType::RealScalar FullPivHouseholderQR::logAbsDeterminant() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); } /** Performs the QR factorization of the given matrix \a matrix. The result of * the factorization is stored into \c *this, and a reference to \c *this * is returned. * * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) */ template FullPivHouseholderQR& FullPivHouseholderQR::compute(const MatrixType& matrix) { check_template_parameters(); using std::abs; Index rows = matrix.rows(); Index cols = matrix.cols(); Index size = (std::min)(rows,cols); m_qr = matrix; m_hCoeffs.resize(size); m_temp.resize(cols); m_precision = NumTraits::epsilon() * RealScalar(size); m_rows_transpositions.resize(size); m_cols_transpositions.resize(size); Index number_of_transpositions = 0; RealScalar biggest(0); m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) m_maxpivot = RealScalar(0); for (Index k = 0; k < size; ++k) { Index row_of_biggest_in_corner, col_of_biggest_in_corner; RealScalar biggest_in_corner; biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k) .cwiseAbs() .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); row_of_biggest_in_corner += k; col_of_biggest_in_corner += k; if(k==0) biggest = biggest_in_corner; // if the corner is negligible, then we have less than full rank, and we can finish early if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { m_nonzero_pivots = k; for(Index i = k; i < size; i++) { m_rows_transpositions.coeffRef(i) = i; m_cols_transpositions.coeffRef(i) = i; m_hCoeffs.coeffRef(i) = Scalar(0); } break; } m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; if(k != row_of_biggest_in_corner) { m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); ++number_of_transpositions; } if(k != col_of_biggest_in_corner) { m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); ++number_of_transpositions; } RealScalar beta; m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); m_qr.coeffRef(k,k) = beta; // remember the maximum absolute value of diagonal coefficients if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); m_qr.bottomRightCorner(rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); } m_cols_permutation.setIdentity(cols); for(Index k = 0; k < size; ++k) m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; return *this; } namespace internal { template struct solve_retval, Rhs> : solve_retval_base, Rhs> { EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) template void evalTo(Dest& dst) const { const Index rows = dec().rows(), cols = dec().cols(); eigen_assert(rhs().rows() == rows); // FIXME introduce nonzeroPivots() and use it here. and more generally, // make the same improvements in this dec as in FullPivLU. if(dec().rank()==0) { dst.setZero(); return; } typename Rhs::PlainObject c(rhs()); Matrix temp(rhs().cols()); for (Index k = 0; k < dec().rank(); ++k) { Index remainingSize = rows-k; c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); c.bottomRightCorner(remainingSize, rhs().cols()) .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), dec().hCoeffs().coeff(k), &temp.coeffRef(0)); } dec().matrixQR() .topLeftCorner(dec().rank(), dec().rank()) .template triangularView() .solveInPlace(c.topRows(dec().rank())); for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); } }; /** \ingroup QR_Module * * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() * * \tparam MatrixType type of underlying dense matrix */ template struct FullPivHouseholderQRMatrixQReturnType : public ReturnByValue > { public: typedef typename MatrixType::Index Index; typedef typename FullPivHouseholderQR::IntDiagSizeVectorType IntDiagSizeVectorType; typedef typename internal::plain_diag_type::type HCoeffsType; typedef Matrix WorkVectorType; FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, const HCoeffsType& hCoeffs, const IntDiagSizeVectorType& rowsTranspositions) : m_qr(qr), m_hCoeffs(hCoeffs), m_rowsTranspositions(rowsTranspositions) {} template void evalTo(ResultType& result) const { const Index rows = m_qr.rows(); WorkVectorType workspace(rows); evalTo(result, workspace); } template void evalTo(ResultType& result, WorkVectorType& workspace) const { using numext::conj; // compute the product H'_0 H'_1 ... H'_n-1, // where H_k is the k-th Householder transformation I - h_k v_k v_k' // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] const Index rows = m_qr.rows(); const Index cols = m_qr.cols(); const Index size = (std::min)(rows, cols); workspace.resize(rows); result.setIdentity(rows, rows); for (Index k = size-1; k >= 0; k--) { result.block(k, k, rows-k, rows-k) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); } } Index rows() const { return m_qr.rows(); } Index cols() const { return m_qr.rows(); } protected: typename MatrixType::Nested m_qr; typename HCoeffsType::Nested m_hCoeffs; typename IntDiagSizeVectorType::Nested m_rowsTranspositions; }; } // end namespace internal template inline typename FullPivHouseholderQR::MatrixQReturnType FullPivHouseholderQR::matrixQ() const { eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); } /** \return the full-pivoting Householder QR decomposition of \c *this. * * \sa class FullPivHouseholderQR */ template const FullPivHouseholderQR::PlainObject> MatrixBase::fullPivHouseholderQr() const { return FullPivHouseholderQR(eval()); } } // end namespace Eigen #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H