// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // Copyright (C) 2007-2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DIAGONALMATRIX_H #define EIGEN_DIAGONALMATRIX_H namespace Eigen { #ifndef EIGEN_PARSED_BY_DOXYGEN template class DiagonalBase : public EigenBase { public: typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::RealScalar RealScalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, IsVectorAtCompileTime = 0, Flags = 0 }; typedef Matrix DenseMatrixType; typedef DenseMatrixType DenseType; typedef DiagonalMatrix PlainObject; inline const Derived& derived() const { return *static_cast(this); } inline Derived& derived() { return *static_cast(this); } DenseMatrixType toDenseMatrix() const { return derived(); } template void evalTo(MatrixBase &other) const; template inline void addTo(MatrixBase &other) const { other.diagonal() += diagonal(); } template inline void subTo(MatrixBase &other) const { other.diagonal() -= diagonal(); } inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } inline DiagonalVectorType& diagonal() { return derived().diagonal(); } inline Index rows() const { return diagonal().size(); } inline Index cols() const { return diagonal().size(); } /** \returns the diagonal matrix product of \c *this by the matrix \a matrix. */ template const DiagonalProduct operator*(const MatrixBase &matrix) const { return DiagonalProduct(matrix.derived(), derived()); } inline const DiagonalWrapper, const DiagonalVectorType> > inverse() const { return diagonal().cwiseInverse(); } inline const DiagonalWrapper, const DiagonalVectorType> > operator*(const Scalar& scalar) const { return diagonal() * scalar; } friend inline const DiagonalWrapper, const DiagonalVectorType> > operator*(const Scalar& scalar, const DiagonalBase& other) { return other.diagonal() * scalar; } #ifdef EIGEN2_SUPPORT template bool isApprox(const DiagonalBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const { return diagonal().isApprox(other.diagonal(), precision); } template bool isApprox(const MatrixBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const { return toDenseMatrix().isApprox(other, precision); } #endif }; template template inline void DiagonalBase::evalTo(MatrixBase &other) const { other.setZero(); other.diagonal() = diagonal(); } #endif /** \class DiagonalMatrix * \ingroup Core_Module * * \brief Represents a diagonal matrix with its storage * * \param _Scalar the type of coefficients * \param SizeAtCompileTime the dimension of the matrix, or Dynamic * \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults * to SizeAtCompileTime. Most of the time, you do not need to specify it. * * \sa class DiagonalWrapper */ namespace internal { template struct traits > : traits > { typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType; typedef Dense StorageKind; typedef DenseIndex Index; enum { Flags = LvalueBit }; }; } template class DiagonalMatrix : public DiagonalBase > { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; typedef const DiagonalMatrix& Nested; typedef _Scalar Scalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; #endif protected: DiagonalVectorType m_diagonal; public: /** const version of diagonal(). */ inline const DiagonalVectorType& diagonal() const { return m_diagonal; } /** \returns a reference to the stored vector of diagonal coefficients. */ inline DiagonalVectorType& diagonal() { return m_diagonal; } /** Default constructor without initialization */ inline DiagonalMatrix() {} /** Constructs a diagonal matrix with given dimension */ inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} /** 2D constructor. */ inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {} /** 3D constructor. */ inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {} /** Copy constructor. */ template inline DiagonalMatrix(const DiagonalBase& other) : m_diagonal(other.diagonal()) {} #ifndef EIGEN_PARSED_BY_DOXYGEN /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {} #endif /** generic constructor from expression of the diagonal coefficients */ template explicit inline DiagonalMatrix(const MatrixBase& other) : m_diagonal(other) {} /** Copy operator. */ template DiagonalMatrix& operator=(const DiagonalBase& other) { m_diagonal = other.diagonal(); return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ DiagonalMatrix& operator=(const DiagonalMatrix& other) { m_diagonal = other.diagonal(); return *this; } #endif /** Resizes to given size. */ inline void resize(Index size) { m_diagonal.resize(size); } /** Sets all coefficients to zero. */ inline void setZero() { m_diagonal.setZero(); } /** Resizes and sets all coefficients to zero. */ inline void setZero(Index size) { m_diagonal.setZero(size); } /** Sets this matrix to be the identity matrix of the current size. */ inline void setIdentity() { m_diagonal.setOnes(); } /** Sets this matrix to be the identity matrix of the given size. */ inline void setIdentity(Index size) { m_diagonal.setOnes(size); } }; /** \class DiagonalWrapper * \ingroup Core_Module * * \brief Expression of a diagonal matrix * * \param _DiagonalVectorType the type of the vector of diagonal coefficients * * This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients, * instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal() * and most of the time this is the only way that it is used. * * \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal() */ namespace internal { template struct traits > { typedef _DiagonalVectorType DiagonalVectorType; typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::Index Index; typedef typename DiagonalVectorType::StorageKind StorageKind; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, Flags = traits::Flags & LvalueBit }; }; } template class DiagonalWrapper : public DiagonalBase >, internal::no_assignment_operator { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef _DiagonalVectorType DiagonalVectorType; typedef DiagonalWrapper Nested; #endif /** Constructor from expression of diagonal coefficients to wrap. */ inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} /** \returns a const reference to the wrapped expression of diagonal coefficients. */ const DiagonalVectorType& diagonal() const { return m_diagonal; } protected: typename DiagonalVectorType::Nested m_diagonal; }; /** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients * * \only_for_vectors * * Example: \include MatrixBase_asDiagonal.cpp * Output: \verbinclude MatrixBase_asDiagonal.out * * \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal() **/ template inline const DiagonalWrapper MatrixBase::asDiagonal() const { return derived(); } /** \returns true if *this is approximately equal to a diagonal matrix, * within the precision given by \a prec. * * Example: \include MatrixBase_isDiagonal.cpp * Output: \verbinclude MatrixBase_isDiagonal.out * * \sa asDiagonal() */ template bool MatrixBase::isDiagonal(const RealScalar& prec) const { using std::abs; if(cols() != rows()) return false; RealScalar maxAbsOnDiagonal = static_cast(-1); for(Index j = 0; j < cols(); ++j) { RealScalar absOnDiagonal = abs(coeff(j,j)); if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; } for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < j; ++i) { if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false; if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false; } return true; } } // end namespace Eigen #endif // EIGEN_DIAGONALMATRIX_H