487 lines
16 KiB
C++
487 lines
16 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/sparse_normal_cholesky_solver.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
|
|
#include "ceres/compressed_row_sparse_matrix.h"
|
|
#include "ceres/cxsparse.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/suitesparse.h"
|
|
#include "ceres/triplet_sparse_matrix.h"
|
|
#include "ceres/types.h"
|
|
#include "ceres/wall_time.h"
|
|
#include "Eigen/SparseCore"
|
|
|
|
#ifdef CERES_USE_EIGEN_SPARSE
|
|
#include "Eigen/SparseCholesky"
|
|
#endif
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
namespace {
|
|
|
|
#ifdef CERES_USE_EIGEN_SPARSE
|
|
// A templated factorized and solve function, which allows us to use
|
|
// the same code independent of whether a AMD or a Natural ordering is
|
|
// used.
|
|
template <typename SimplicialCholeskySolver, typename SparseMatrixType>
|
|
LinearSolver::Summary SimplicialLDLTSolve(
|
|
const SparseMatrixType& lhs,
|
|
const bool do_symbolic_analysis,
|
|
SimplicialCholeskySolver* solver,
|
|
double* rhs_and_solution,
|
|
EventLogger* event_logger) {
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 1;
|
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
|
summary.message = "Success.";
|
|
|
|
if (do_symbolic_analysis) {
|
|
solver->analyzePattern(lhs);
|
|
event_logger->AddEvent("Analyze");
|
|
if (solver->info() != Eigen::Success) {
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message =
|
|
"Eigen failure. Unable to find symbolic factorization.";
|
|
return summary;
|
|
}
|
|
}
|
|
|
|
solver->factorize(lhs);
|
|
event_logger->AddEvent("Factorize");
|
|
if (solver->info() != Eigen::Success) {
|
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
|
summary.message = "Eigen failure. Unable to find numeric factorization.";
|
|
return summary;
|
|
}
|
|
|
|
const Vector rhs = VectorRef(rhs_and_solution, lhs.cols());
|
|
|
|
VectorRef(rhs_and_solution, lhs.cols()) = solver->solve(rhs);
|
|
event_logger->AddEvent("Solve");
|
|
if (solver->info() != Eigen::Success) {
|
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
|
summary.message = "Eigen failure. Unable to do triangular solve.";
|
|
return summary;
|
|
}
|
|
|
|
return summary;
|
|
}
|
|
|
|
#endif // CERES_USE_EIGEN_SPARSE
|
|
|
|
#ifndef CERES_NO_CXSPARSE
|
|
LinearSolver::Summary ComputeNormalEquationsAndSolveUsingCXSparse(
|
|
CompressedRowSparseMatrix* A,
|
|
double * rhs_and_solution,
|
|
EventLogger* event_logger) {
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 1;
|
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
|
summary.message = "Success.";
|
|
|
|
CXSparse cxsparse;
|
|
|
|
// Wrap the augmented Jacobian in a compressed sparse column matrix.
|
|
cs_di a_transpose = cxsparse.CreateSparseMatrixTransposeView(A);
|
|
|
|
// Compute the normal equations. J'J delta = J'f and solve them
|
|
// using a sparse Cholesky factorization. Notice that when compared
|
|
// to SuiteSparse we have to explicitly compute the transpose of Jt,
|
|
// and then the normal equations before they can be
|
|
// factorized. CHOLMOD/SuiteSparse on the other hand can just work
|
|
// off of Jt to compute the Cholesky factorization of the normal
|
|
// equations.
|
|
cs_di* a = cxsparse.TransposeMatrix(&a_transpose);
|
|
cs_di* lhs = cxsparse.MatrixMatrixMultiply(&a_transpose, a);
|
|
cxsparse.Free(a);
|
|
event_logger->AddEvent("NormalEquations");
|
|
|
|
cs_dis* factor = cxsparse.AnalyzeCholesky(lhs);
|
|
event_logger->AddEvent("Analysis");
|
|
|
|
if (factor == NULL) {
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message = "CXSparse::AnalyzeCholesky failed.";
|
|
} else if (!cxsparse.SolveCholesky(lhs, factor, rhs_and_solution)) {
|
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
|
summary.message = "CXSparse::SolveCholesky failed.";
|
|
}
|
|
event_logger->AddEvent("Solve");
|
|
|
|
cxsparse.Free(lhs);
|
|
cxsparse.Free(factor);
|
|
event_logger->AddEvent("TearDown");
|
|
return summary;
|
|
}
|
|
|
|
#endif // CERES_NO_CXSPARSE
|
|
|
|
} // namespace
|
|
|
|
SparseNormalCholeskySolver::SparseNormalCholeskySolver(
|
|
const LinearSolver::Options& options)
|
|
: factor_(NULL),
|
|
cxsparse_factor_(NULL),
|
|
options_(options) {
|
|
}
|
|
|
|
void SparseNormalCholeskySolver::FreeFactorization() {
|
|
if (factor_ != NULL) {
|
|
ss_.Free(factor_);
|
|
factor_ = NULL;
|
|
}
|
|
|
|
if (cxsparse_factor_ != NULL) {
|
|
cxsparse_.Free(cxsparse_factor_);
|
|
cxsparse_factor_ = NULL;
|
|
}
|
|
}
|
|
|
|
SparseNormalCholeskySolver::~SparseNormalCholeskySolver() {
|
|
FreeFactorization();
|
|
}
|
|
|
|
LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl(
|
|
CompressedRowSparseMatrix* A,
|
|
const double* b,
|
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
|
double * x) {
|
|
|
|
const int num_cols = A->num_cols();
|
|
VectorRef(x, num_cols).setZero();
|
|
A->LeftMultiply(b, x);
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
// Temporarily append a diagonal block to the A matrix, but undo
|
|
// it before returning the matrix to the user.
|
|
scoped_ptr<CompressedRowSparseMatrix> regularizer;
|
|
if (A->col_blocks().size() > 0) {
|
|
regularizer.reset(CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
|
|
per_solve_options.D, A->col_blocks()));
|
|
} else {
|
|
regularizer.reset(new CompressedRowSparseMatrix(
|
|
per_solve_options.D, num_cols));
|
|
}
|
|
A->AppendRows(*regularizer);
|
|
}
|
|
|
|
LinearSolver::Summary summary;
|
|
switch (options_.sparse_linear_algebra_library_type) {
|
|
case SUITE_SPARSE:
|
|
summary = SolveImplUsingSuiteSparse(A, x);
|
|
break;
|
|
case CX_SPARSE:
|
|
summary = SolveImplUsingCXSparse(A, x);
|
|
break;
|
|
case EIGEN_SPARSE:
|
|
summary = SolveImplUsingEigen(A, x);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unknown sparse linear algebra library : "
|
|
<< options_.sparse_linear_algebra_library_type;
|
|
}
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
A->DeleteRows(num_cols);
|
|
}
|
|
|
|
return summary;
|
|
}
|
|
|
|
LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingEigen(
|
|
CompressedRowSparseMatrix* A,
|
|
double * rhs_and_solution) {
|
|
#ifndef CERES_USE_EIGEN_SPARSE
|
|
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 0;
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message =
|
|
"SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE "
|
|
"because Ceres was not built with support for "
|
|
"Eigen's SimplicialLDLT decomposition. "
|
|
"This requires enabling building with -DEIGENSPARSE=ON.";
|
|
return summary;
|
|
|
|
#else
|
|
|
|
EventLogger event_logger("SparseNormalCholeskySolver::Eigen::Solve");
|
|
// Compute the normal equations. J'J delta = J'f and solve them
|
|
// using a sparse Cholesky factorization. Notice that when compared
|
|
// to SuiteSparse we have to explicitly compute the normal equations
|
|
// before they can be factorized. CHOLMOD/SuiteSparse on the other
|
|
// hand can just work off of Jt to compute the Cholesky
|
|
// factorization of the normal equations.
|
|
|
|
if (options_.dynamic_sparsity) {
|
|
// In the case where the problem has dynamic sparsity, it is not
|
|
// worth using the ComputeOuterProduct routine, as the setup cost
|
|
// is not amortized over multiple calls to Solve.
|
|
Eigen::MappedSparseMatrix<double, Eigen::RowMajor> a(
|
|
A->num_rows(),
|
|
A->num_cols(),
|
|
A->num_nonzeros(),
|
|
A->mutable_rows(),
|
|
A->mutable_cols(),
|
|
A->mutable_values());
|
|
|
|
Eigen::SparseMatrix<double> lhs = a.transpose() * a;
|
|
Eigen::SimplicialLDLT<Eigen::SparseMatrix<double> > solver;
|
|
return SimplicialLDLTSolve(lhs,
|
|
true,
|
|
&solver,
|
|
rhs_and_solution,
|
|
&event_logger);
|
|
}
|
|
|
|
if (outer_product_.get() == NULL) {
|
|
outer_product_.reset(
|
|
CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
|
|
*A, &pattern_));
|
|
}
|
|
|
|
CompressedRowSparseMatrix::ComputeOuterProduct(
|
|
*A, pattern_, outer_product_.get());
|
|
|
|
// Map to an upper triangular column major matrix.
|
|
//
|
|
// outer_product_ is a compressed row sparse matrix and in lower
|
|
// triangular form, when mapped to a compressed column sparse
|
|
// matrix, it becomes an upper triangular matrix.
|
|
Eigen::MappedSparseMatrix<double, Eigen::ColMajor> lhs(
|
|
outer_product_->num_rows(),
|
|
outer_product_->num_rows(),
|
|
outer_product_->num_nonzeros(),
|
|
outer_product_->mutable_rows(),
|
|
outer_product_->mutable_cols(),
|
|
outer_product_->mutable_values());
|
|
|
|
bool do_symbolic_analysis = false;
|
|
|
|
// If using post ordering or an old version of Eigen, we cannot
|
|
// depend on a preordered jacobian, so we work with a SimplicialLDLT
|
|
// decomposition with AMD ordering.
|
|
if (options_.use_postordering ||
|
|
!EIGEN_VERSION_AT_LEAST(3, 2, 2)) {
|
|
if (amd_ldlt_.get() == NULL) {
|
|
amd_ldlt_.reset(new SimplicialLDLTWithAMDOrdering);
|
|
do_symbolic_analysis = true;
|
|
}
|
|
|
|
return SimplicialLDLTSolve(lhs,
|
|
do_symbolic_analysis,
|
|
amd_ldlt_.get(),
|
|
rhs_and_solution,
|
|
&event_logger);
|
|
}
|
|
|
|
#if EIGEN_VERSION_AT_LEAST(3,2,2)
|
|
// The common case
|
|
if (natural_ldlt_.get() == NULL) {
|
|
natural_ldlt_.reset(new SimplicialLDLTWithNaturalOrdering);
|
|
do_symbolic_analysis = true;
|
|
}
|
|
|
|
return SimplicialLDLTSolve(lhs,
|
|
do_symbolic_analysis,
|
|
natural_ldlt_.get(),
|
|
rhs_and_solution,
|
|
&event_logger);
|
|
#endif
|
|
|
|
#endif // EIGEN_USE_EIGEN_SPARSE
|
|
}
|
|
|
|
LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse(
|
|
CompressedRowSparseMatrix* A,
|
|
double * rhs_and_solution) {
|
|
#ifdef CERES_NO_CXSPARSE
|
|
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 0;
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message =
|
|
"SPARSE_NORMAL_CHOLESKY cannot be used with CX_SPARSE "
|
|
"because Ceres was not built with support for CXSparse. "
|
|
"This requires enabling building with -DCXSPARSE=ON.";
|
|
|
|
return summary;
|
|
|
|
#else
|
|
|
|
EventLogger event_logger("SparseNormalCholeskySolver::CXSparse::Solve");
|
|
if (options_.dynamic_sparsity) {
|
|
return ComputeNormalEquationsAndSolveUsingCXSparse(A,
|
|
rhs_and_solution,
|
|
&event_logger);
|
|
}
|
|
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 1;
|
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
|
summary.message = "Success.";
|
|
|
|
// Compute the normal equations. J'J delta = J'f and solve them
|
|
// using a sparse Cholesky factorization. Notice that when compared
|
|
// to SuiteSparse we have to explicitly compute the normal equations
|
|
// before they can be factorized. CHOLMOD/SuiteSparse on the other
|
|
// hand can just work off of Jt to compute the Cholesky
|
|
// factorization of the normal equations.
|
|
if (outer_product_.get() == NULL) {
|
|
outer_product_.reset(
|
|
CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
|
|
*A, &pattern_));
|
|
}
|
|
|
|
CompressedRowSparseMatrix::ComputeOuterProduct(
|
|
*A, pattern_, outer_product_.get());
|
|
cs_di lhs =
|
|
cxsparse_.CreateSparseMatrixTransposeView(outer_product_.get());
|
|
|
|
event_logger.AddEvent("Setup");
|
|
|
|
// Compute symbolic factorization if not available.
|
|
if (cxsparse_factor_ == NULL) {
|
|
if (options_.use_postordering) {
|
|
cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(&lhs,
|
|
A->col_blocks(),
|
|
A->col_blocks());
|
|
} else {
|
|
cxsparse_factor_ = cxsparse_.AnalyzeCholeskyWithNaturalOrdering(&lhs);
|
|
}
|
|
}
|
|
event_logger.AddEvent("Analysis");
|
|
|
|
if (cxsparse_factor_ == NULL) {
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message =
|
|
"CXSparse failure. Unable to find symbolic factorization.";
|
|
} else if (!cxsparse_.SolveCholesky(&lhs,
|
|
cxsparse_factor_,
|
|
rhs_and_solution)) {
|
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
|
summary.message = "CXSparse::SolveCholesky failed.";
|
|
}
|
|
event_logger.AddEvent("Solve");
|
|
|
|
return summary;
|
|
#endif
|
|
}
|
|
|
|
LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse(
|
|
CompressedRowSparseMatrix* A,
|
|
double * rhs_and_solution) {
|
|
#ifdef CERES_NO_SUITESPARSE
|
|
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 0;
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
summary.message =
|
|
"SPARSE_NORMAL_CHOLESKY cannot be used with SUITE_SPARSE "
|
|
"because Ceres was not built with support for SuiteSparse. "
|
|
"This requires enabling building with -DSUITESPARSE=ON.";
|
|
return summary;
|
|
|
|
#else
|
|
|
|
EventLogger event_logger("SparseNormalCholeskySolver::SuiteSparse::Solve");
|
|
LinearSolver::Summary summary;
|
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
|
summary.num_iterations = 1;
|
|
summary.message = "Success.";
|
|
|
|
const int num_cols = A->num_cols();
|
|
cholmod_sparse lhs = ss_.CreateSparseMatrixTransposeView(A);
|
|
event_logger.AddEvent("Setup");
|
|
|
|
if (options_.dynamic_sparsity) {
|
|
FreeFactorization();
|
|
}
|
|
|
|
if (factor_ == NULL) {
|
|
if (options_.use_postordering) {
|
|
factor_ = ss_.BlockAnalyzeCholesky(&lhs,
|
|
A->col_blocks(),
|
|
A->row_blocks(),
|
|
&summary.message);
|
|
} else {
|
|
if (options_.dynamic_sparsity) {
|
|
factor_ = ss_.AnalyzeCholesky(&lhs, &summary.message);
|
|
} else {
|
|
factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&lhs,
|
|
&summary.message);
|
|
}
|
|
}
|
|
}
|
|
event_logger.AddEvent("Analysis");
|
|
|
|
if (factor_ == NULL) {
|
|
summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
|
|
// No need to set message as it has already been set by the
|
|
// symbolic analysis routines above.
|
|
return summary;
|
|
}
|
|
|
|
summary.termination_type = ss_.Cholesky(&lhs, factor_, &summary.message);
|
|
if (summary.termination_type != LINEAR_SOLVER_SUCCESS) {
|
|
return summary;
|
|
}
|
|
|
|
cholmod_dense* rhs = ss_.CreateDenseVector(rhs_and_solution,
|
|
num_cols,
|
|
num_cols);
|
|
cholmod_dense* solution = ss_.Solve(factor_, rhs, &summary.message);
|
|
event_logger.AddEvent("Solve");
|
|
|
|
ss_.Free(rhs);
|
|
if (solution != NULL) {
|
|
memcpy(rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution));
|
|
ss_.Free(solution);
|
|
} else {
|
|
// No need to set message as it has already been set by the
|
|
// numeric factorization routine above.
|
|
summary.termination_type = LINEAR_SOLVER_FAILURE;
|
|
}
|
|
|
|
event_logger.AddEvent("Teardown");
|
|
return summary;
|
|
#endif
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|