MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/Eigen2Support/MathFunctions.h
2019-01-03 16:25:18 +08:00

58 lines
2.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_MATH_FUNCTIONS_H
#define EIGEN2_MATH_FUNCTIONS_H
namespace Eigen {
template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
template<typename T> inline T ei_exp (const T& x) { using std::exp; return exp(x); }
template<typename T> inline T ei_log (const T& x) { using std::log; return log(x); }
template<typename T> inline T ei_sin (const T& x) { using std::sin; return sin(x); }
template<typename T> inline T ei_cos (const T& x) { using std::cos; return cos(x); }
template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
template<typename T> inline T ei_random () { return internal::random<T>(); }
template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
template<typename Scalar, typename OtherScalar>
inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isMuchSmallerThan(x, y, precision);
}
template<typename Scalar>
inline bool ei_isApprox(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isApprox(x, y, precision);
}
template<typename Scalar>
inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isApproxOrLessThan(x, y, precision);
}
} // end namespace Eigen
#endif // EIGEN2_MATH_FUNCTIONS_H