228 lines
11 KiB
C++
228 lines
11 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// Create CostFunctions as needed by the least squares framework, with
|
|
// Jacobians computed via automatic differentiation. For more
|
|
// information on automatic differentation, see the wikipedia article
|
|
// at http://en.wikipedia.org/wiki/Automatic_differentiation
|
|
//
|
|
// To get an auto differentiated cost function, you must define a class with a
|
|
// templated operator() (a functor) that computes the cost function in terms of
|
|
// the template parameter T. The autodiff framework substitutes appropriate
|
|
// "jet" objects for T in order to compute the derivative when necessary, but
|
|
// this is hidden, and you should write the function as if T were a scalar type
|
|
// (e.g. a double-precision floating point number).
|
|
//
|
|
// The function must write the computed value in the last argument
|
|
// (the only non-const one) and return true to indicate
|
|
// success. Please see cost_function.h for details on how the return
|
|
// value maybe used to impose simple constraints on the parameter
|
|
// block.
|
|
//
|
|
// For example, consider a scalar error e = k - x'y, where both x and y are
|
|
// two-dimensional column vector parameters, the prime sign indicates
|
|
// transposition, and k is a constant. The form of this error, which is the
|
|
// difference between a constant and an expression, is a common pattern in least
|
|
// squares problems. For example, the value x'y might be the model expectation
|
|
// for a series of measurements, where there is an instance of the cost function
|
|
// for each measurement k.
|
|
//
|
|
// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
|
|
// the squaring is implicitly done by the optimization framework.
|
|
//
|
|
// To write an auto-differentiable cost function for the above model, first
|
|
// define the object
|
|
//
|
|
// class MyScalarCostFunctor {
|
|
// MyScalarCostFunctor(double k): k_(k) {}
|
|
//
|
|
// template <typename T>
|
|
// bool operator()(const T* const x , const T* const y, T* e) const {
|
|
// e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
|
|
// return true;
|
|
// }
|
|
//
|
|
// private:
|
|
// double k_;
|
|
// };
|
|
//
|
|
// Note that in the declaration of operator() the input parameters x and y come
|
|
// first, and are passed as const pointers to arrays of T. If there were three
|
|
// input parameters, then the third input parameter would come after y. The
|
|
// output is always the last parameter, and is also a pointer to an array. In
|
|
// the example above, e is a scalar, so only e[0] is set.
|
|
//
|
|
// Then given this class definition, the auto differentiated cost function for
|
|
// it can be constructed as follows.
|
|
//
|
|
// CostFunction* cost_function
|
|
// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
|
|
// new MyScalarCostFunctor(1.0)); ^ ^ ^
|
|
// | | |
|
|
// Dimension of residual -----+ | |
|
|
// Dimension of x ---------------+ |
|
|
// Dimension of y ------------------+
|
|
//
|
|
// In this example, there is usually an instance for each measumerent of k.
|
|
//
|
|
// In the instantiation above, the template parameters following
|
|
// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
|
|
// 1-dimensional output from two arguments, both 2-dimensional.
|
|
//
|
|
// AutoDiffCostFunction also supports cost functions with a
|
|
// runtime-determined number of residuals. For example:
|
|
//
|
|
// CostFunction* cost_function
|
|
// = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
|
|
// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
|
|
// runtime_number_of_residuals); <----+ | | |
|
|
// | | | |
|
|
// | | | |
|
|
// Actual number of residuals ------+ | | |
|
|
// Indicate dynamic number of residuals --------+ | |
|
|
// Dimension of x ------------------------------------+ |
|
|
// Dimension of y ---------------------------------------+
|
|
//
|
|
// The framework can currently accommodate cost functions of up to 10
|
|
// independent variables, and there is no limit on the dimensionality
|
|
// of each of them.
|
|
//
|
|
// WARNING #1: Since the functor will get instantiated with different types for
|
|
// T, you must to convert from other numeric types to T before mixing
|
|
// computations with other variables of type T. In the example above, this is
|
|
// seen where instead of using k_ directly, k_ is wrapped with T(k_).
|
|
//
|
|
// WARNING #2: A common beginner's error when first using autodiff cost
|
|
// functions is to get the sizing wrong. In particular, there is a tendency to
|
|
// set the template parameters to (dimension of residual, number of parameters)
|
|
// instead of passing a dimension parameter for *every parameter*. In the
|
|
// example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
|
|
// the last '2' argument. Please be careful when setting the size parameters.
|
|
|
|
#ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
|
|
#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
|
|
|
|
#include "ceres/internal/autodiff.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/sized_cost_function.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
|
|
// A cost function which computes the derivative of the cost with respect to
|
|
// the parameters (a.k.a. the jacobian) using an autodifferentiation framework.
|
|
// The first template argument is the functor object, described in the header
|
|
// comment. The second argument is the dimension of the residual (or
|
|
// ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
|
|
// arguments describe the size of the Nth parameter, one per parameter.
|
|
//
|
|
// The constructors take ownership of the cost functor.
|
|
//
|
|
// If the number of residuals (argument kNumResiduals below) is
|
|
// ceres::DYNAMIC, then the two-argument constructor must be used. The
|
|
// second constructor takes a number of residuals (in addition to the
|
|
// templated number of residuals). This allows for varying the number
|
|
// of residuals for a single autodiff cost function at runtime.
|
|
template <typename CostFunctor,
|
|
int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
|
|
int N0, // Number of parameters in block 0.
|
|
int N1 = 0, // Number of parameters in block 1.
|
|
int N2 = 0, // Number of parameters in block 2.
|
|
int N3 = 0, // Number of parameters in block 3.
|
|
int N4 = 0, // Number of parameters in block 4.
|
|
int N5 = 0, // Number of parameters in block 5.
|
|
int N6 = 0, // Number of parameters in block 6.
|
|
int N7 = 0, // Number of parameters in block 7.
|
|
int N8 = 0, // Number of parameters in block 8.
|
|
int N9 = 0> // Number of parameters in block 9.
|
|
class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9> {
|
|
public:
|
|
// Takes ownership of functor. Uses the template-provided value for the
|
|
// number of residuals ("kNumResiduals").
|
|
explicit AutoDiffCostFunction(CostFunctor* functor)
|
|
: functor_(functor) {
|
|
CHECK_NE(kNumResiduals, DYNAMIC)
|
|
<< "Can't run the fixed-size constructor if the "
|
|
<< "number of residuals is set to ceres::DYNAMIC.";
|
|
}
|
|
|
|
// Takes ownership of functor. Ignores the template-provided
|
|
// kNumResiduals in favor of the "num_residuals" argument provided.
|
|
//
|
|
// This allows for having autodiff cost functions which return varying
|
|
// numbers of residuals at runtime.
|
|
AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
|
|
: functor_(functor) {
|
|
CHECK_EQ(kNumResiduals, DYNAMIC)
|
|
<< "Can't run the dynamic-size constructor if the "
|
|
<< "number of residuals is not ceres::DYNAMIC.";
|
|
SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9>
|
|
::set_num_residuals(num_residuals);
|
|
}
|
|
|
|
virtual ~AutoDiffCostFunction() {}
|
|
|
|
// Implementation details follow; clients of the autodiff cost function should
|
|
// not have to examine below here.
|
|
//
|
|
// To handle varardic cost functions, some template magic is needed. It's
|
|
// mostly hidden inside autodiff.h.
|
|
virtual bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
if (!jacobians) {
|
|
return internal::VariadicEvaluate<
|
|
CostFunctor, double, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>
|
|
::Call(*functor_, parameters, residuals);
|
|
}
|
|
return internal::AutoDiff<CostFunctor, double,
|
|
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(
|
|
*functor_,
|
|
parameters,
|
|
SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9>::num_residuals(),
|
|
residuals,
|
|
jacobians);
|
|
}
|
|
|
|
private:
|
|
internal::scoped_ptr<CostFunctor> functor_;
|
|
};
|
|
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
|