882 lines
38 KiB
C++
882 lines
38 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/line_search.h"
|
|
|
|
#include <iomanip>
|
|
#include <iostream> // NOLINT
|
|
|
|
#include "glog/logging.h"
|
|
#include "ceres/evaluator.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/fpclassify.h"
|
|
#include "ceres/map_util.h"
|
|
#include "ceres/polynomial.h"
|
|
#include "ceres/stringprintf.h"
|
|
#include "ceres/wall_time.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using std::map;
|
|
using std::ostream;
|
|
using std::string;
|
|
using std::vector;
|
|
|
|
namespace {
|
|
// Precision used for floating point values in error message output.
|
|
const int kErrorMessageNumericPrecision = 8;
|
|
|
|
FunctionSample ValueSample(const double x, const double value) {
|
|
FunctionSample sample;
|
|
sample.x = x;
|
|
sample.value = value;
|
|
sample.value_is_valid = true;
|
|
return sample;
|
|
}
|
|
|
|
FunctionSample ValueAndGradientSample(const double x,
|
|
const double value,
|
|
const double gradient) {
|
|
FunctionSample sample;
|
|
sample.x = x;
|
|
sample.value = value;
|
|
sample.gradient = gradient;
|
|
sample.value_is_valid = true;
|
|
sample.gradient_is_valid = true;
|
|
return sample;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
ostream& operator<<(ostream &os, const FunctionSample& sample);
|
|
|
|
// Convenience stream operator for pushing FunctionSamples into log messages.
|
|
ostream& operator<<(ostream &os, const FunctionSample& sample) {
|
|
os << sample.ToDebugString();
|
|
return os;
|
|
}
|
|
|
|
LineSearch::LineSearch(const LineSearch::Options& options)
|
|
: options_(options) {}
|
|
|
|
LineSearch* LineSearch::Create(const LineSearchType line_search_type,
|
|
const LineSearch::Options& options,
|
|
string* error) {
|
|
LineSearch* line_search = NULL;
|
|
switch (line_search_type) {
|
|
case ceres::ARMIJO:
|
|
line_search = new ArmijoLineSearch(options);
|
|
break;
|
|
case ceres::WOLFE:
|
|
line_search = new WolfeLineSearch(options);
|
|
break;
|
|
default:
|
|
*error = string("Invalid line search algorithm type: ") +
|
|
LineSearchTypeToString(line_search_type) +
|
|
string(", unable to create line search.");
|
|
return NULL;
|
|
}
|
|
return line_search;
|
|
}
|
|
|
|
LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
|
|
: evaluator_(evaluator),
|
|
position_(evaluator->NumParameters()),
|
|
direction_(evaluator->NumEffectiveParameters()),
|
|
evaluation_point_(evaluator->NumParameters()),
|
|
scaled_direction_(evaluator->NumEffectiveParameters()),
|
|
gradient_(evaluator->NumEffectiveParameters()),
|
|
initial_evaluator_residual_time_in_seconds(0.0),
|
|
initial_evaluator_jacobian_time_in_seconds(0.0) {}
|
|
|
|
void LineSearchFunction::Init(const Vector& position,
|
|
const Vector& direction) {
|
|
position_ = position;
|
|
direction_ = direction;
|
|
}
|
|
|
|
bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
|
|
scaled_direction_ = x * direction_;
|
|
if (!evaluator_->Plus(position_.data(),
|
|
scaled_direction_.data(),
|
|
evaluation_point_.data())) {
|
|
return false;
|
|
}
|
|
|
|
if (g == NULL) {
|
|
return (evaluator_->Evaluate(evaluation_point_.data(),
|
|
f, NULL, NULL, NULL) &&
|
|
IsFinite(*f));
|
|
}
|
|
|
|
if (!evaluator_->Evaluate(evaluation_point_.data(),
|
|
f, NULL, gradient_.data(), NULL)) {
|
|
return false;
|
|
}
|
|
|
|
*g = direction_.dot(gradient_);
|
|
return IsFinite(*f) && IsFinite(*g);
|
|
}
|
|
|
|
double LineSearchFunction::DirectionInfinityNorm() const {
|
|
return direction_.lpNorm<Eigen::Infinity>();
|
|
}
|
|
|
|
void LineSearchFunction::ResetTimeStatistics() {
|
|
const map<string, double> evaluator_time_statistics =
|
|
evaluator_->TimeStatistics();
|
|
initial_evaluator_residual_time_in_seconds =
|
|
FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0);
|
|
initial_evaluator_jacobian_time_in_seconds =
|
|
FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0);
|
|
}
|
|
|
|
void LineSearchFunction::TimeStatistics(
|
|
double* cost_evaluation_time_in_seconds,
|
|
double* gradient_evaluation_time_in_seconds) const {
|
|
const map<string, double> evaluator_time_statistics =
|
|
evaluator_->TimeStatistics();
|
|
*cost_evaluation_time_in_seconds =
|
|
FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0) -
|
|
initial_evaluator_residual_time_in_seconds;
|
|
// Strictly speaking this will slightly underestimate the time spent
|
|
// evaluating the gradient of the line search univariate cost function as it
|
|
// does not count the time spent performing the dot product with the direction
|
|
// vector. However, this will typically be small by comparison, and also
|
|
// allows direct subtraction of the timing information from the totals for
|
|
// the evaluator returned in the solver summary.
|
|
*gradient_evaluation_time_in_seconds =
|
|
FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0) -
|
|
initial_evaluator_jacobian_time_in_seconds;
|
|
}
|
|
|
|
void LineSearch::Search(double step_size_estimate,
|
|
double initial_cost,
|
|
double initial_gradient,
|
|
Summary* summary) const {
|
|
const double start_time = WallTimeInSeconds();
|
|
*CHECK_NOTNULL(summary) = LineSearch::Summary();
|
|
|
|
summary->cost_evaluation_time_in_seconds = 0.0;
|
|
summary->gradient_evaluation_time_in_seconds = 0.0;
|
|
summary->polynomial_minimization_time_in_seconds = 0.0;
|
|
|
|
options().function->ResetTimeStatistics();
|
|
this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
|
|
options().function->
|
|
TimeStatistics(&summary->cost_evaluation_time_in_seconds,
|
|
&summary->gradient_evaluation_time_in_seconds);
|
|
|
|
summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
|
|
}
|
|
|
|
// Returns step_size \in [min_step_size, max_step_size] which minimizes the
|
|
// polynomial of degree defined by interpolation_type which interpolates all
|
|
// of the provided samples with valid values.
|
|
double LineSearch::InterpolatingPolynomialMinimizingStepSize(
|
|
const LineSearchInterpolationType& interpolation_type,
|
|
const FunctionSample& lowerbound,
|
|
const FunctionSample& previous,
|
|
const FunctionSample& current,
|
|
const double min_step_size,
|
|
const double max_step_size) const {
|
|
if (!current.value_is_valid ||
|
|
(interpolation_type == BISECTION &&
|
|
max_step_size <= current.x)) {
|
|
// Either: sample is invalid; or we are using BISECTION and contracting
|
|
// the step size.
|
|
return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
|
|
} else if (interpolation_type == BISECTION) {
|
|
CHECK_GT(max_step_size, current.x);
|
|
// We are expanding the search (during a Wolfe bracketing phase) using
|
|
// BISECTION interpolation. Using BISECTION when trying to expand is
|
|
// strictly speaking an oxymoron, but we define this to mean always taking
|
|
// the maximum step size so that the Armijo & Wolfe implementations are
|
|
// agnostic to the interpolation type.
|
|
return max_step_size;
|
|
}
|
|
// Only check if lower-bound is valid here, where it is required
|
|
// to avoid replicating current.value_is_valid == false
|
|
// behaviour in WolfeLineSearch.
|
|
CHECK(lowerbound.value_is_valid)
|
|
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Ceres bug: lower-bound sample for interpolation is invalid, "
|
|
<< "please contact the developers!, interpolation_type: "
|
|
<< LineSearchInterpolationTypeToString(interpolation_type)
|
|
<< ", lowerbound: " << lowerbound << ", previous: " << previous
|
|
<< ", current: " << current;
|
|
|
|
// Select step size by interpolating the function and gradient values
|
|
// and minimizing the corresponding polynomial.
|
|
vector<FunctionSample> samples;
|
|
samples.push_back(lowerbound);
|
|
|
|
if (interpolation_type == QUADRATIC) {
|
|
// Two point interpolation using function values and the
|
|
// gradient at the lower bound.
|
|
samples.push_back(ValueSample(current.x, current.value));
|
|
|
|
if (previous.value_is_valid) {
|
|
// Three point interpolation, using function values and the
|
|
// gradient at the lower bound.
|
|
samples.push_back(ValueSample(previous.x, previous.value));
|
|
}
|
|
} else if (interpolation_type == CUBIC) {
|
|
// Two point interpolation using the function values and the gradients.
|
|
samples.push_back(current);
|
|
|
|
if (previous.value_is_valid) {
|
|
// Three point interpolation using the function values and
|
|
// the gradients.
|
|
samples.push_back(previous);
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
|
|
<< LineSearchInterpolationTypeToString(interpolation_type)
|
|
<< ", please contact the developers!";
|
|
}
|
|
|
|
double step_size = 0.0, unused_min_value = 0.0;
|
|
MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
|
|
&step_size, &unused_min_value);
|
|
return step_size;
|
|
}
|
|
|
|
ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
|
|
: LineSearch(options) {}
|
|
|
|
void ArmijoLineSearch::DoSearch(const double step_size_estimate,
|
|
const double initial_cost,
|
|
const double initial_gradient,
|
|
Summary* summary) const {
|
|
CHECK_GE(step_size_estimate, 0.0);
|
|
CHECK_GT(options().sufficient_decrease, 0.0);
|
|
CHECK_LT(options().sufficient_decrease, 1.0);
|
|
CHECK_GT(options().max_num_iterations, 0);
|
|
LineSearchFunction* function = options().function;
|
|
|
|
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
|
|
// not step_size_estimate, which is our starting guess.
|
|
const FunctionSample initial_position =
|
|
ValueAndGradientSample(0.0, initial_cost, initial_gradient);
|
|
|
|
FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
|
|
previous.value_is_valid = false;
|
|
|
|
FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
|
|
current.value_is_valid = false;
|
|
|
|
// As the Armijo line search algorithm always uses the initial point, for
|
|
// which both the function value and derivative are known, when fitting a
|
|
// minimizing polynomial, we can fit up to a quadratic without requiring the
|
|
// gradient at the current query point.
|
|
const bool interpolation_uses_gradient_at_current_sample =
|
|
options().interpolation_type == CUBIC;
|
|
const double descent_direction_max_norm = function->DirectionInfinityNorm();
|
|
|
|
++summary->num_function_evaluations;
|
|
if (interpolation_uses_gradient_at_current_sample) {
|
|
++summary->num_gradient_evaluations;
|
|
}
|
|
current.value_is_valid =
|
|
function->Evaluate(current.x,
|
|
¤t.value,
|
|
interpolation_uses_gradient_at_current_sample
|
|
? ¤t.gradient : NULL);
|
|
current.gradient_is_valid =
|
|
interpolation_uses_gradient_at_current_sample && current.value_is_valid;
|
|
while (!current.value_is_valid ||
|
|
current.value > (initial_cost
|
|
+ options().sufficient_decrease
|
|
* initial_gradient
|
|
* current.x)) {
|
|
// If current.value_is_valid is false, we treat it as if the cost at that
|
|
// point is not large enough to satisfy the sufficient decrease condition.
|
|
++summary->num_iterations;
|
|
if (summary->num_iterations >= options().max_num_iterations) {
|
|
summary->error =
|
|
StringPrintf("Line search failed: Armijo failed to find a point "
|
|
"satisfying the sufficient decrease condition within "
|
|
"specified max_num_iterations: %d.",
|
|
options().max_num_iterations);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return;
|
|
}
|
|
|
|
const double polynomial_minimization_start_time = WallTimeInSeconds();
|
|
const double step_size =
|
|
this->InterpolatingPolynomialMinimizingStepSize(
|
|
options().interpolation_type,
|
|
initial_position,
|
|
previous,
|
|
current,
|
|
(options().max_step_contraction * current.x),
|
|
(options().min_step_contraction * current.x));
|
|
summary->polynomial_minimization_time_in_seconds +=
|
|
(WallTimeInSeconds() - polynomial_minimization_start_time);
|
|
|
|
if (step_size * descent_direction_max_norm < options().min_step_size) {
|
|
summary->error =
|
|
StringPrintf("Line search failed: step_size too small: %.5e "
|
|
"with descent_direction_max_norm: %.5e.", step_size,
|
|
descent_direction_max_norm);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return;
|
|
}
|
|
|
|
previous = current;
|
|
current.x = step_size;
|
|
|
|
++summary->num_function_evaluations;
|
|
if (interpolation_uses_gradient_at_current_sample) {
|
|
++summary->num_gradient_evaluations;
|
|
}
|
|
current.value_is_valid =
|
|
function->Evaluate(current.x,
|
|
¤t.value,
|
|
interpolation_uses_gradient_at_current_sample
|
|
? ¤t.gradient : NULL);
|
|
current.gradient_is_valid =
|
|
interpolation_uses_gradient_at_current_sample && current.value_is_valid;
|
|
}
|
|
|
|
summary->optimal_step_size = current.x;
|
|
summary->success = true;
|
|
}
|
|
|
|
WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
|
|
: LineSearch(options) {}
|
|
|
|
void WolfeLineSearch::DoSearch(const double step_size_estimate,
|
|
const double initial_cost,
|
|
const double initial_gradient,
|
|
Summary* summary) const {
|
|
// All parameters should have been validated by the Solver, but as
|
|
// invalid values would produce crazy nonsense, hard check them here.
|
|
CHECK_GE(step_size_estimate, 0.0);
|
|
CHECK_GT(options().sufficient_decrease, 0.0);
|
|
CHECK_GT(options().sufficient_curvature_decrease,
|
|
options().sufficient_decrease);
|
|
CHECK_LT(options().sufficient_curvature_decrease, 1.0);
|
|
CHECK_GT(options().max_step_expansion, 1.0);
|
|
|
|
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
|
|
// not step_size_estimate, which is our starting guess.
|
|
const FunctionSample initial_position =
|
|
ValueAndGradientSample(0.0, initial_cost, initial_gradient);
|
|
|
|
bool do_zoom_search = false;
|
|
// Important: The high/low in bracket_high & bracket_low refer to their
|
|
// _function_ values, not their step sizes i.e. it is _not_ required that
|
|
// bracket_low.x < bracket_high.x.
|
|
FunctionSample solution, bracket_low, bracket_high;
|
|
|
|
// Wolfe bracketing phase: Increases step_size until either it finds a point
|
|
// that satisfies the (strong) Wolfe conditions, or an interval that brackets
|
|
// step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
|
|
// interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
|
|
// the strong Wolfe conditions if one of the following conditions are met:
|
|
//
|
|
// 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
|
|
// 2. f(step_size_{k}) >= f(step_size_{k-1}).
|
|
// 3. f'(step_size_{k}) >= 0.
|
|
//
|
|
// Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
|
|
// this special case, step_size monotonically increases during bracketing.
|
|
if (!this->BracketingPhase(initial_position,
|
|
step_size_estimate,
|
|
&bracket_low,
|
|
&bracket_high,
|
|
&do_zoom_search,
|
|
summary)) {
|
|
// Failed to find either a valid point, a valid bracket satisfying the Wolfe
|
|
// conditions, or even a step size > minimum tolerance satisfying the Armijo
|
|
// condition.
|
|
return;
|
|
}
|
|
|
|
if (!do_zoom_search) {
|
|
// Either: Bracketing phase already found a point satisfying the strong
|
|
// Wolfe conditions, thus no Zoom required.
|
|
//
|
|
// Or: Bracketing failed to find a valid bracket or a point satisfying the
|
|
// strong Wolfe conditions within max_num_iterations, or whilst searching
|
|
// shrank the bracket width until it was below our minimum tolerance.
|
|
// As these are 'artificial' constraints, and we would otherwise fail to
|
|
// produce a valid point when ArmijoLineSearch would succeed, we return the
|
|
// point with the lowest cost found thus far which satsifies the Armijo
|
|
// condition (but not the Wolfe conditions).
|
|
summary->optimal_step_size = bracket_low.x;
|
|
summary->success = true;
|
|
return;
|
|
}
|
|
|
|
VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Starting line search zoom phase with bracket_low: "
|
|
<< bracket_low << ", bracket_high: " << bracket_high
|
|
<< ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
|
|
<< ", bracket abs delta cost: "
|
|
<< fabs(bracket_low.value - bracket_high.value);
|
|
|
|
// Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
|
|
// non-zero, finite width that should bracket step sizes which satisfy the
|
|
// (strong) Wolfe conditions (before finding a step size that satisfies the
|
|
// conditions). Zoom successively decreases the size of the interval until a
|
|
// step size which satisfies the Wolfe conditions is found. The interval is
|
|
// defined by bracket_low & bracket_high, which satisfy:
|
|
//
|
|
// 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
|
|
// contains step sizes that satsify the strong Wolfe conditions.
|
|
// 2. bracket_low.x is of all the step sizes evaluated *which satisifed the
|
|
// Armijo sufficient decrease condition*, the one which generated the
|
|
// smallest function value, i.e. bracket_low.value <
|
|
// f(all other steps satisfying Armijo).
|
|
// - Note that this does _not_ (necessarily) mean that initially
|
|
// bracket_low.value < bracket_high.value (although this is typical)
|
|
// e.g. when bracket_low = initial_position, and bracket_high is the
|
|
// first sample, and which does not satisfy the Armijo condition,
|
|
// but still has bracket_high.value < initial_position.value.
|
|
// 3. bracket_high is chosen after bracket_low, s.t.
|
|
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
|
|
if (!this->ZoomPhase(initial_position,
|
|
bracket_low,
|
|
bracket_high,
|
|
&solution,
|
|
summary) && !solution.value_is_valid) {
|
|
// Failed to find a valid point (given the specified decrease parameters)
|
|
// within the specified bracket.
|
|
return;
|
|
}
|
|
// Ensure that if we ran out of iterations whilst zooming the bracket, or
|
|
// shrank the bracket width to < tolerance and failed to find a point which
|
|
// satisfies the strong Wolfe curvature condition, that we return the point
|
|
// amongst those found thus far, which minimizes f() and satisfies the Armijo
|
|
// condition.
|
|
solution =
|
|
solution.value_is_valid && solution.value <= bracket_low.value
|
|
? solution : bracket_low;
|
|
|
|
summary->optimal_step_size = solution.x;
|
|
summary->success = true;
|
|
}
|
|
|
|
// Returns true if either:
|
|
//
|
|
// A termination condition satisfying the (strong) Wolfe bracketing conditions
|
|
// is found:
|
|
//
|
|
// - A valid point, defined as a bracket of zero width [zoom not required].
|
|
// - A valid bracket (of width > tolerance), [zoom required].
|
|
//
|
|
// Or, searching was stopped due to an 'artificial' constraint, i.e. not
|
|
// a condition imposed / required by the underlying algorithm, but instead an
|
|
// engineering / implementation consideration. But a step which exceeds the
|
|
// minimum step size, and satsifies the Armijo condition was still found,
|
|
// and should thus be used [zoom not required].
|
|
//
|
|
// Returns false if no step size > minimum step size was found which
|
|
// satisfies at least the Armijo condition.
|
|
bool WolfeLineSearch::BracketingPhase(
|
|
const FunctionSample& initial_position,
|
|
const double step_size_estimate,
|
|
FunctionSample* bracket_low,
|
|
FunctionSample* bracket_high,
|
|
bool* do_zoom_search,
|
|
Summary* summary) const {
|
|
LineSearchFunction* function = options().function;
|
|
|
|
FunctionSample previous = initial_position;
|
|
FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
|
|
current.value_is_valid = false;
|
|
|
|
const double descent_direction_max_norm =
|
|
function->DirectionInfinityNorm();
|
|
|
|
*do_zoom_search = false;
|
|
*bracket_low = initial_position;
|
|
|
|
// As we require the gradient to evaluate the Wolfe condition, we always
|
|
// calculate it together with the value, irrespective of the interpolation
|
|
// type. As opposed to only calculating the gradient after the Armijo
|
|
// condition is satisifed, as the computational saving from this approach
|
|
// would be slight (perhaps even negative due to the extra call). Also,
|
|
// always calculating the value & gradient together protects against us
|
|
// reporting invalid solutions if the cost function returns slightly different
|
|
// function values when evaluated with / without gradients (due to numerical
|
|
// issues).
|
|
++summary->num_function_evaluations;
|
|
++summary->num_gradient_evaluations;
|
|
current.value_is_valid =
|
|
function->Evaluate(current.x,
|
|
¤t.value,
|
|
¤t.gradient);
|
|
current.gradient_is_valid = current.value_is_valid;
|
|
|
|
while (true) {
|
|
++summary->num_iterations;
|
|
|
|
if (current.value_is_valid &&
|
|
(current.value > (initial_position.value
|
|
+ options().sufficient_decrease
|
|
* initial_position.gradient
|
|
* current.x) ||
|
|
(previous.value_is_valid && current.value > previous.value))) {
|
|
// Bracket found: current step size violates Armijo sufficient decrease
|
|
// condition, or has stepped past an inflection point of f() relative to
|
|
// previous step size.
|
|
*do_zoom_search = true;
|
|
*bracket_low = previous;
|
|
*bracket_high = current;
|
|
VLOG(3) << std::scientific
|
|
<< std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Bracket found: current step (" << current.x
|
|
<< ") violates Armijo sufficient condition, or has passed an "
|
|
<< "inflection point of f() based on value.";
|
|
break;
|
|
}
|
|
|
|
if (current.value_is_valid &&
|
|
fabs(current.gradient) <=
|
|
-options().sufficient_curvature_decrease * initial_position.gradient) {
|
|
// Current step size satisfies the strong Wolfe conditions, and is thus a
|
|
// valid termination point, therefore a Zoom not required.
|
|
*bracket_low = current;
|
|
*bracket_high = current;
|
|
VLOG(3) << std::scientific
|
|
<< std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Bracketing phase found step size: " << current.x
|
|
<< ", satisfying strong Wolfe conditions, initial_position: "
|
|
<< initial_position << ", current: " << current;
|
|
break;
|
|
|
|
} else if (current.value_is_valid && current.gradient >= 0) {
|
|
// Bracket found: current step size has stepped past an inflection point
|
|
// of f(), but Armijo sufficient decrease is still satisfied and
|
|
// f(current) is our best minimum thus far. Remember step size
|
|
// monotonically increases, thus previous_step_size < current_step_size
|
|
// even though f(previous) > f(current).
|
|
*do_zoom_search = true;
|
|
// Note inverse ordering from first bracket case.
|
|
*bracket_low = current;
|
|
*bracket_high = previous;
|
|
VLOG(3) << "Bracket found: current step (" << current.x
|
|
<< ") satisfies Armijo, but has gradient >= 0, thus have passed "
|
|
<< "an inflection point of f().";
|
|
break;
|
|
|
|
} else if (current.value_is_valid &&
|
|
fabs(current.x - previous.x) * descent_direction_max_norm
|
|
< options().min_step_size) {
|
|
// We have shrunk the search bracket to a width less than our tolerance,
|
|
// and still not found either a point satisfying the strong Wolfe
|
|
// conditions, or a valid bracket containing such a point. Stop searching
|
|
// and set bracket_low to the size size amongst all those tested which
|
|
// minimizes f() and satisfies the Armijo condition.
|
|
LOG_IF(WARNING, !options().is_silent)
|
|
<< "Line search failed: Wolfe bracketing phase shrank "
|
|
<< "bracket width: " << fabs(current.x - previous.x)
|
|
<< ", to < tolerance: " << options().min_step_size
|
|
<< ", with descent_direction_max_norm: "
|
|
<< descent_direction_max_norm << ", and failed to find "
|
|
<< "a point satisfying the strong Wolfe conditions or a "
|
|
<< "bracketing containing such a point. Accepting "
|
|
<< "point found satisfying Armijo condition only, to "
|
|
<< "allow continuation.";
|
|
*bracket_low = current;
|
|
break;
|
|
|
|
} else if (summary->num_iterations >= options().max_num_iterations) {
|
|
// Check num iterations bound here so that we always evaluate the
|
|
// max_num_iterations-th iteration against all conditions, and
|
|
// then perform no additional (unused) evaluations.
|
|
summary->error =
|
|
StringPrintf("Line search failed: Wolfe bracketing phase failed to "
|
|
"find a point satisfying strong Wolfe conditions, or a "
|
|
"bracket containing such a point within specified "
|
|
"max_num_iterations: %d", options().max_num_iterations);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
// Ensure that bracket_low is always set to the step size amongst all
|
|
// those tested which minimizes f() and satisfies the Armijo condition
|
|
// when we terminate due to the 'artificial' max_num_iterations condition.
|
|
*bracket_low =
|
|
current.value_is_valid && current.value < bracket_low->value
|
|
? current : *bracket_low;
|
|
break;
|
|
}
|
|
// Either: f(current) is invalid; or, f(current) is valid, but does not
|
|
// satisfy the strong Wolfe conditions itself, or the conditions for
|
|
// being a boundary of a bracket.
|
|
|
|
// If f(current) is valid, (but meets no criteria) expand the search by
|
|
// increasing the step size.
|
|
const double max_step_size =
|
|
current.value_is_valid
|
|
? (current.x * options().max_step_expansion) : current.x;
|
|
|
|
// We are performing 2-point interpolation only here, but the API of
|
|
// InterpolatingPolynomialMinimizingStepSize() allows for up to
|
|
// 3-point interpolation, so pad call with a sample with an invalid
|
|
// value that will therefore be ignored.
|
|
const FunctionSample unused_previous;
|
|
DCHECK(!unused_previous.value_is_valid);
|
|
// Contracts step size if f(current) is not valid.
|
|
const double polynomial_minimization_start_time = WallTimeInSeconds();
|
|
const double step_size =
|
|
this->InterpolatingPolynomialMinimizingStepSize(
|
|
options().interpolation_type,
|
|
previous,
|
|
unused_previous,
|
|
current,
|
|
previous.x,
|
|
max_step_size);
|
|
summary->polynomial_minimization_time_in_seconds +=
|
|
(WallTimeInSeconds() - polynomial_minimization_start_time);
|
|
if (step_size * descent_direction_max_norm < options().min_step_size) {
|
|
summary->error =
|
|
StringPrintf("Line search failed: step_size too small: %.5e "
|
|
"with descent_direction_max_norm: %.5e", step_size,
|
|
descent_direction_max_norm);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return false;
|
|
}
|
|
|
|
previous = current.value_is_valid ? current : previous;
|
|
current.x = step_size;
|
|
|
|
++summary->num_function_evaluations;
|
|
++summary->num_gradient_evaluations;
|
|
current.value_is_valid =
|
|
function->Evaluate(current.x,
|
|
¤t.value,
|
|
¤t.gradient);
|
|
current.gradient_is_valid = current.value_is_valid;
|
|
}
|
|
|
|
// Ensure that even if a valid bracket was found, we will only mark a zoom
|
|
// as required if the bracket's width is greater than our minimum tolerance.
|
|
if (*do_zoom_search &&
|
|
fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
|
|
< options().min_step_size) {
|
|
*do_zoom_search = false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
|
|
// on return false, if we stopped searching due to the 'artificial' condition of
|
|
// reaching max_num_iterations, solution is the step size amongst all those
|
|
// tested, which satisfied the Armijo decrease condition and minimized f().
|
|
bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
|
|
FunctionSample bracket_low,
|
|
FunctionSample bracket_high,
|
|
FunctionSample* solution,
|
|
Summary* summary) const {
|
|
LineSearchFunction* function = options().function;
|
|
|
|
CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
|
|
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
|
|
<< "the developers!, initial_position: " << initial_position
|
|
<< ", bracket_low: " << bracket_low
|
|
<< ", bracket_high: "<< bracket_high;
|
|
// We do not require bracket_high.gradient_is_valid as the gradient condition
|
|
// for a valid bracket is only dependent upon bracket_low.gradient, and
|
|
// in order to minimize jacobian evaluations, bracket_high.gradient may
|
|
// not have been calculated (if bracket_high.value does not satisfy the
|
|
// Armijo sufficient decrease condition and interpolation method does not
|
|
// require it).
|
|
//
|
|
// We also do not require that: bracket_low.value < bracket_high.value,
|
|
// although this is typical. This is to deal with the case when
|
|
// bracket_low = initial_position, bracket_high is the first sample,
|
|
// and bracket_high does not satisfy the Armijo condition, but still has
|
|
// bracket_high.value < initial_position.value.
|
|
CHECK(bracket_high.value_is_valid)
|
|
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Ceres bug: f_high input to Wolfe Zoom invalid, please "
|
|
<< "contact the developers!, initial_position: " << initial_position
|
|
<< ", bracket_low: " << bracket_low
|
|
<< ", bracket_high: "<< bracket_high;
|
|
|
|
if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
|
|
// The third condition for a valid initial bracket:
|
|
//
|
|
// 3. bracket_high is chosen after bracket_low, s.t.
|
|
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
|
|
//
|
|
// is not satisfied. As this can happen when the users' cost function
|
|
// returns inconsistent gradient values relative to the function values,
|
|
// we do not CHECK_LT(), but we do stop processing and return an invalid
|
|
// value.
|
|
summary->error =
|
|
StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
|
|
"which does not satisfy: bracket_low.gradient * "
|
|
"(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
|
|
"with initial_position: %s, bracket_low: %s, bracket_high:"
|
|
" %s, the most likely cause of which is the cost function "
|
|
"returning inconsistent gradient & function values.",
|
|
bracket_low.gradient * (bracket_high.x - bracket_low.x),
|
|
initial_position.ToDebugString().c_str(),
|
|
bracket_low.ToDebugString().c_str(),
|
|
bracket_high.ToDebugString().c_str());
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
solution->value_is_valid = false;
|
|
return false;
|
|
}
|
|
|
|
const int num_bracketing_iterations = summary->num_iterations;
|
|
const double descent_direction_max_norm = function->DirectionInfinityNorm();
|
|
|
|
while (true) {
|
|
// Set solution to bracket_low, as it is our best step size (smallest f())
|
|
// found thus far and satisfies the Armijo condition, even though it does
|
|
// not satisfy the Wolfe condition.
|
|
*solution = bracket_low;
|
|
if (summary->num_iterations >= options().max_num_iterations) {
|
|
summary->error =
|
|
StringPrintf("Line search failed: Wolfe zoom phase failed to "
|
|
"find a point satisfying strong Wolfe conditions "
|
|
"within specified max_num_iterations: %d, "
|
|
"(num iterations taken for bracketing: %d).",
|
|
options().max_num_iterations, num_bracketing_iterations);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return false;
|
|
}
|
|
if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
|
|
< options().min_step_size) {
|
|
// Bracket width has been reduced below tolerance, and no point satisfying
|
|
// the strong Wolfe conditions has been found.
|
|
summary->error =
|
|
StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
|
|
"too small with descent_direction_max_norm: %.5e.",
|
|
fabs(bracket_high.x - bracket_low.x),
|
|
descent_direction_max_norm);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return false;
|
|
}
|
|
|
|
++summary->num_iterations;
|
|
// Polynomial interpolation requires inputs ordered according to step size,
|
|
// not f(step size).
|
|
const FunctionSample& lower_bound_step =
|
|
bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
|
|
const FunctionSample& upper_bound_step =
|
|
bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
|
|
// We are performing 2-point interpolation only here, but the API of
|
|
// InterpolatingPolynomialMinimizingStepSize() allows for up to
|
|
// 3-point interpolation, so pad call with a sample with an invalid
|
|
// value that will therefore be ignored.
|
|
const FunctionSample unused_previous;
|
|
DCHECK(!unused_previous.value_is_valid);
|
|
const double polynomial_minimization_start_time = WallTimeInSeconds();
|
|
solution->x =
|
|
this->InterpolatingPolynomialMinimizingStepSize(
|
|
options().interpolation_type,
|
|
lower_bound_step,
|
|
unused_previous,
|
|
upper_bound_step,
|
|
lower_bound_step.x,
|
|
upper_bound_step.x);
|
|
summary->polynomial_minimization_time_in_seconds +=
|
|
(WallTimeInSeconds() - polynomial_minimization_start_time);
|
|
// No check on magnitude of step size being too small here as it is
|
|
// lower-bounded by the initial bracket start point, which was valid.
|
|
//
|
|
// As we require the gradient to evaluate the Wolfe condition, we always
|
|
// calculate it together with the value, irrespective of the interpolation
|
|
// type. As opposed to only calculating the gradient after the Armijo
|
|
// condition is satisifed, as the computational saving from this approach
|
|
// would be slight (perhaps even negative due to the extra call). Also,
|
|
// always calculating the value & gradient together protects against us
|
|
// reporting invalid solutions if the cost function returns slightly
|
|
// different function values when evaluated with / without gradients (due
|
|
// to numerical issues).
|
|
++summary->num_function_evaluations;
|
|
++summary->num_gradient_evaluations;
|
|
solution->value_is_valid =
|
|
function->Evaluate(solution->x,
|
|
&solution->value,
|
|
&solution->gradient);
|
|
solution->gradient_is_valid = solution->value_is_valid;
|
|
if (!solution->value_is_valid) {
|
|
summary->error =
|
|
StringPrintf("Line search failed: Wolfe Zoom phase found "
|
|
"step_size: %.5e, for which function is invalid, "
|
|
"between low_step: %.5e and high_step: %.5e "
|
|
"at which function is valid.",
|
|
solution->x, bracket_low.x, bracket_high.x);
|
|
LOG_IF(WARNING, !options().is_silent) << summary->error;
|
|
return false;
|
|
}
|
|
|
|
VLOG(3) << "Zoom iteration: "
|
|
<< summary->num_iterations - num_bracketing_iterations
|
|
<< ", bracket_low: " << bracket_low
|
|
<< ", bracket_high: " << bracket_high
|
|
<< ", minimizing solution: " << *solution;
|
|
|
|
if ((solution->value > (initial_position.value
|
|
+ options().sufficient_decrease
|
|
* initial_position.gradient
|
|
* solution->x)) ||
|
|
(solution->value >= bracket_low.value)) {
|
|
// Armijo sufficient decrease not satisfied, or not better
|
|
// than current lowest sample, use as new upper bound.
|
|
bracket_high = *solution;
|
|
continue;
|
|
}
|
|
|
|
// Armijo sufficient decrease satisfied, check strong Wolfe condition.
|
|
if (fabs(solution->gradient) <=
|
|
-options().sufficient_curvature_decrease * initial_position.gradient) {
|
|
// Found a valid termination point satisfying strong Wolfe conditions.
|
|
VLOG(3) << std::scientific
|
|
<< std::setprecision(kErrorMessageNumericPrecision)
|
|
<< "Zoom phase found step size: " << solution->x
|
|
<< ", satisfying strong Wolfe conditions.";
|
|
break;
|
|
|
|
} else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
|
|
bracket_high = bracket_low;
|
|
}
|
|
|
|
bracket_low = *solution;
|
|
}
|
|
// Solution contains a valid point which satisfies the strong Wolfe
|
|
// conditions.
|
|
return true;
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|